On Germs of Constriction Curves in Model of Overdamped Josephson Junction, Dynamical Isomonodromic Foliation and Painlevé 3 Equation

A. Glutsyuk
{"title":"On Germs of Constriction Curves in Model of Overdamped Josephson Junction, Dynamical Isomonodromic Foliation and Painlevé 3 Equation","authors":"A. Glutsyuk","doi":"10.17323/1609-4514-2023-23-4-479-513","DOIUrl":null,"url":null,"abstract":"B.Josephson (Nobel Prize, 1973) predicted tunnelling effect for a system (called Josephson junction) of two superconductors separated by a narrow dielectric: existence of a supercurrent through it and equations governing it. The overdamped Josephson junction is modeled by a family of differential equations on 2-torus depending on 3 parameters: $B$, $A$, $\\omega$. We study its rotation number $\\rho(B,A;\\omega)$ as a function of parameters. The three-dimensional phase-lock areas are the level sets $L_r:=\\{\\rho=r\\}$ with non-empty interiors; they exist for $r\\in\\mathbb Z$ (Buchstaber, Karpov, Tertychnyi). For every fixed $\\omega>0$ and $r\\in\\mathbb Z$ the planar slice $L_r\\cap(\\mathbb R^2_{B,A}\\times\\{\\omega\\})$ is a garland of domains going vertically to infinity and separated by points; those separating points for which $A\\neq0$ are called constrictions. In a joint paper by Yu.Bibilo and the author, it was shown that 1) at each constriction the rescaled abscissa $\\ell:=\\frac B\\omega$ is equal to $\\rho$; 2) the family of constrictions with given $\\ell\\in\\mathbb Z$ is an analytic submanifold $Constr_\\ell$ in $(\\mathbb R^2_+)_{a,s}$, $a=\\omega^{-1}$, $s=\\frac A\\omega$. Here we show that the limit points of $Constr_\\ell$ are $\\beta_{\\ell,k}=(0,s_{\\ell,k})$, where $s_{\\ell,k}>0$ are zeros of the Bessel function $J_\\ell(s)$, and it lands at them regularly. Known numerical pictures show that high components of $Int(L_r)$ look similar. In his paper with Bibilo, the author introduced a candidate to the self-similarity map between neighbor components: the Poincar\\'e map of the dynamical isomonodromic foliation governed by Painlev\\'e 3 equation. Whenever well-defined, it preserves $\\rho$. We show that the Poincar\\'e map is well-defined on a neighborhood of the plane $\\{ a=0\\}\\subset\\mathbb R^2_{\\ell,a}\\times(\\mathbb R_+)_s$, and it sends $\\beta_{\\ell,k}$ to $\\beta_{\\ell,k+1}$ for integer $\\ell$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2023-23-4-479-513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

B.Josephson (Nobel Prize, 1973) predicted tunnelling effect for a system (called Josephson junction) of two superconductors separated by a narrow dielectric: existence of a supercurrent through it and equations governing it. The overdamped Josephson junction is modeled by a family of differential equations on 2-torus depending on 3 parameters: $B$, $A$, $\omega$. We study its rotation number $\rho(B,A;\omega)$ as a function of parameters. The three-dimensional phase-lock areas are the level sets $L_r:=\{\rho=r\}$ with non-empty interiors; they exist for $r\in\mathbb Z$ (Buchstaber, Karpov, Tertychnyi). For every fixed $\omega>0$ and $r\in\mathbb Z$ the planar slice $L_r\cap(\mathbb R^2_{B,A}\times\{\omega\})$ is a garland of domains going vertically to infinity and separated by points; those separating points for which $A\neq0$ are called constrictions. In a joint paper by Yu.Bibilo and the author, it was shown that 1) at each constriction the rescaled abscissa $\ell:=\frac B\omega$ is equal to $\rho$; 2) the family of constrictions with given $\ell\in\mathbb Z$ is an analytic submanifold $Constr_\ell$ in $(\mathbb R^2_+)_{a,s}$, $a=\omega^{-1}$, $s=\frac A\omega$. Here we show that the limit points of $Constr_\ell$ are $\beta_{\ell,k}=(0,s_{\ell,k})$, where $s_{\ell,k}>0$ are zeros of the Bessel function $J_\ell(s)$, and it lands at them regularly. Known numerical pictures show that high components of $Int(L_r)$ look similar. In his paper with Bibilo, the author introduced a candidate to the self-similarity map between neighbor components: the Poincar\'e map of the dynamical isomonodromic foliation governed by Painlev\'e 3 equation. Whenever well-defined, it preserves $\rho$. We show that the Poincar\'e map is well-defined on a neighborhood of the plane $\{ a=0\}\subset\mathbb R^2_{\ell,a}\times(\mathbb R_+)_s$, and it sends $\beta_{\ell,k}$ to $\beta_{\ell,k+1}$ for integer $\ell$.
分享
查看原文
论超阻尼约瑟夫森结模型中的收缩曲线胚芽、动态等单折线和潘列韦 3 方程
约瑟夫森(B.Josephson)(1973 年诺贝尔奖得主)预言了由两个超导体组成的系统(称为约瑟夫森结)的隧穿效应,该系统由一个狭窄的电介质隔开:存在通过它的超电流,并有支配超电流的方程。过阻尼约瑟夫森结是由 2-Torus 上的微分方程族建模的,它取决于 3 个参数:$B$, $A$, $\omega$。我们研究了作为参数函数的旋转数 $\rho(B,A;\omega)$。三维锁相区域是具有非空内部的水平集 $L_r:=\{\rho=r\}$;它们对于 $r\in\mathbb Z$ 而言是存在的(布赫斯塔伯、卡尔波夫、特尔季奇尼)。对于每一个固定的 $\omega>0$ 和 $r\in\mathbb Z$ 平面切片 $L_r\cap(\mathbb R^2_{B,A}\times\{omega\})$ 是一个垂直于无穷大并被点分隔的域的花环;对于 $A\neq0$ 的那些分隔点被称为约束。在 Yu.Bibilo 和作者的联合论文中,证明了:1)在每个收缩处,重标定的尾数 $\ell:=\frac B\omega$ 等于 $\rho$;2)给定 $\ell\in\mathbb Z$ 的收缩族是 $(\mathbb R^2_+)_{a,s}$ 中的解析子满面 $Constr_\ell$,$a=\omega^{-1}$, $s=\frac A\omega$.在这里,我们证明了 $Constr_\ell$ 的极限点是 $\beta_{\ell,k}=(0,s_{\ell,k})$,其中 $s_{\ell,k}>0$ 是贝塞尔函数 $J_\ell(s)$ 的零点,并且有规律地落在这些点上。已知的数值图片显示,$Int(L_r)$ 的高分量看起来也很相似。在与比比罗合作的论文中,作者介绍了邻近分量之间自相似性映射的候选映射:由 Painlev\'e 3 方程支配的动态等单调折射的 Poincar\'e 映射。只要定义明确,它就会保留 $\rho$ 。我们证明了Poincar/'e映射在平面${ a=0\}\subset\mathbb R^2_{\ell,a}\times(\mathbb R_+)_s$的邻域上定义良好,并且对于整数$\ell$,它将$\beta_{\ell,k}$发送到$\beta_{\ell,k+1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信