Degradation of Ciprofloxacin Antibiotic Waste Using TiO2 Nanotube with Addition of Anthocyanin Dye-Sensitizer In Photocatalysis Process: Review

Fidarohman Fidarohman, Berliana Tristati Putri, Martina Reza Putri, I. Kustiningsih, S. Slamet
{"title":"Degradation of Ciprofloxacin Antibiotic Waste Using TiO2 Nanotube with Addition of Anthocyanin Dye-Sensitizer In Photocatalysis Process: Review","authors":"Fidarohman Fidarohman, Berliana Tristati Putri, Martina Reza Putri, I. Kustiningsih, S. Slamet","doi":"10.23955/rkl.v18i2.28520","DOIUrl":null,"url":null,"abstract":"An antibiotic-containing waste entering the water bodies is very dangerous because it can disturb the balance of the ecosystem and can modify the genetic information of natural bacteria so that resistance occurs. One type of antibiotic is ciprofloxacin (CIP) which can pollute aquatic ecosystems. One potential method that can be used to degrade the CIP is photocatalysis since it is low cost, highly effective, and environmentally friendly. To improve the performance of TiO₂ photocatalyst, morphological engineering is carried out to form TiO₂ nanotube arrays and then coated with natural anthocyanin sensitizer. The morphological engineering of TiO₂ can be done through the anodization process. It is an electrochemical coating process that can convert metals to porous metal oxide layers. The effectiveness of the TiO2 photocatalyst in degrading pollutants can be increased by a dye-sensitizer addition. Commonly, natural anthocyanin dyes are chosen as sensitizers on the TiO2 semiconductor surfaces. Visible light is absorbed by the dye-sensitizer substances to speed up the electron excitation mechanism. The dye-sensitizer addition causes the TiO2 photocatalyst to be more responsive to visible light. The addition of the dye-sensitizer on the surface of TiO2 nanotubes has the potential to increase the degradation of ciprofloxacin waste using a photocatalytic process.","PeriodicalId":369371,"journal":{"name":"Jurnal Rekayasa Kimia & Lingkungan","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Kimia & Lingkungan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23955/rkl.v18i2.28520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An antibiotic-containing waste entering the water bodies is very dangerous because it can disturb the balance of the ecosystem and can modify the genetic information of natural bacteria so that resistance occurs. One type of antibiotic is ciprofloxacin (CIP) which can pollute aquatic ecosystems. One potential method that can be used to degrade the CIP is photocatalysis since it is low cost, highly effective, and environmentally friendly. To improve the performance of TiO₂ photocatalyst, morphological engineering is carried out to form TiO₂ nanotube arrays and then coated with natural anthocyanin sensitizer. The morphological engineering of TiO₂ can be done through the anodization process. It is an electrochemical coating process that can convert metals to porous metal oxide layers. The effectiveness of the TiO2 photocatalyst in degrading pollutants can be increased by a dye-sensitizer addition. Commonly, natural anthocyanin dyes are chosen as sensitizers on the TiO2 semiconductor surfaces. Visible light is absorbed by the dye-sensitizer substances to speed up the electron excitation mechanism. The dye-sensitizer addition causes the TiO2 photocatalyst to be more responsive to visible light. The addition of the dye-sensitizer on the surface of TiO2 nanotubes has the potential to increase the degradation of ciprofloxacin waste using a photocatalytic process.
在光催化过程中使用添加花青素染料敏化剂的 TiO2 纳米管降解环丙沙星抗生素废料综述
含有抗生素的废物进入水体是非常危险的,因为它会破坏生态系统的平衡,改变天然细菌的遗传信息,从而产生抗药性。环丙沙星(CIP)就是抗生素的一种,它会污染水生生态系统。光催化是降解环丙沙星的一种潜在方法,因为它成本低、效率高、对环境友好。为了提高 TiO₂光催化剂的性能,我们采用了形态工程技术来形成 TiO₂纳米管阵列,然后在其表面涂覆天然花青素敏化剂。TiO₂ 的形态工程可以通过阳极氧化工艺来完成。这是一种电化学涂层工艺,可将金属转化为多孔金属氧化物层。添加染料敏化剂可提高二氧化钛光催化剂降解污染物的效果。通常,TiO2 半导体表面选择天然花青素染料作为敏化剂。染料敏化剂物质吸收可见光,加速电子激发机制。添加染料敏化剂后,TiO2 光催化剂对可见光的反应更加灵敏。在 TiO2 纳米管表面添加染料敏化剂有可能利用光催化过程增加环丙沙星废物的降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信