Galactic Chemical Evolution with the short lived radioisotopes \(^{53}\textbf{Mn}\), \(^{60}\textbf{Fe}\), \(^{182}\textbf{Hf}\), and \(^{244}\textbf{Pu}\)

Benjamin Wehmeyer, Andr´es Yag¨ue L´opez, Benoit Cˆot´e, Maria K. Pet˝o, Chiaki Kobayashi, Maria Lugaro
{"title":"Galactic Chemical Evolution with the short lived radioisotopes \\(^{53}\\textbf{Mn}\\), \\(^{60}\\textbf{Fe}\\), \\(^{182}\\textbf{Hf}\\), and \\(^{244}\\textbf{Pu}\\)","authors":"Benjamin Wehmeyer, Andr´es Yag¨ue L´opez, Benoit Cˆot´e, Maria K. Pet˝o, Chiaki Kobayashi, Maria Lugaro","doi":"10.15625/0868-3166/17727","DOIUrl":null,"url":null,"abstract":"Modelling the Galactic chemical evolution (GCE) of short-lived radioisotopes (SLRs, with half-lives of the order of million years) can provide timing information on recent nucleosynthesis. The knowledge of their spatial distribution throughout the interstellar medium (ISM) is crucial. We are using a three-dimensional GCE model to investigate the evolution of four SLRs: \\(^{53}\\)Mn from supernovae of type Ia (SNeIa), \\(^{60}\\)Fe from core-collapse supernovae (CCSNe), \\(^{182}\\)Hf from stellar winds from intermediate mass stars (IMSs), and \\(^{244}\\)Pu from neutron star mergers (NSMs) to explain the recent (within the last $\\approx 1 -- 20$ Myr) deposition of live SLRs into deep-sea reservoirs. We find that although these SLRs are produced at very different nucleosynthetic sites, they are deposited on Earth conjointly.","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/17727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling the Galactic chemical evolution (GCE) of short-lived radioisotopes (SLRs, with half-lives of the order of million years) can provide timing information on recent nucleosynthesis. The knowledge of their spatial distribution throughout the interstellar medium (ISM) is crucial. We are using a three-dimensional GCE model to investigate the evolution of four SLRs: \(^{53}\)Mn from supernovae of type Ia (SNeIa), \(^{60}\)Fe from core-collapse supernovae (CCSNe), \(^{182}\)Hf from stellar winds from intermediate mass stars (IMSs), and \(^{244}\)Pu from neutron star mergers (NSMs) to explain the recent (within the last $\approx 1 -- 20$ Myr) deposition of live SLRs into deep-sea reservoirs. We find that although these SLRs are produced at very different nucleosynthetic sites, they are deposited on Earth conjointly.
使用短寿命放射性同位素((^{53}\textbf{Mn}\)、((^{60}\textbf{Fe}\)、((^{182}\textbf{Hf}\)和((^{244}\textbf{Pu}\)的银河化学演变
建立短寿命放射性同位素(SLR,半衰期约为百万年)的银河化学演化(GCE)模型可以提供有关近期核合成的时间信息。了解它们在整个星际介质(ISM)中的空间分布至关重要。我们正在使用一个三维 GCE 模型来研究四种 SLR 的演化:\(^{53}\)Mn来自Ia型超新星(SNeIa),\(^{60}\)Fe来自核坍缩超新星(CCSNe),\(^{182}\)Hf来自中等质量恒星(IMSs)的恒星风、和来自中子星合并(NSMs)的(^{244}\)Pu来解释最近(在过去大约1-20百万年内)活的SLRs沉积到深海储层的现象。我们发现,尽管这些SLR是在非常不同的核合成地点产生的,但它们是共同沉积在地球上的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信