The research center for ultra-high voltage electron microscopy at Osaka University.

H Fujita
{"title":"The research center for ultra-high voltage electron microscopy at Osaka University.","authors":"H Fujita","doi":"10.1002/jemt.1060120304","DOIUrl":null,"url":null,"abstract":"<p><p>High-voltage electron microscopy has shown itself advantageous for the study of natural science, including biology, but especially for materials science. The most important advantage for materials science is for in situ experiments about the detailed processes of the phenomena that occur in bulk materials. The present paper is mainly concerned with several types of in situ experiments that have been carried out in the Research Center for Ultra-High Voltage Electron Microscopy, Osaka University. The following subjects have been studied: a) fundamental problems, such as the conditions necessary for in situ experiments, functional features of specimen treatment devices, and the effects of electron irradiation; b) the dislocation behavior of crystals under various conditions; c) high-temperature behavior of refractory materials, mainly ceramic composites; d) new applications of electron irradiation effects, such as amorphization of crystalline materials and electron-irradiation-induced foreign-atom implantation; e) environment-matter interaction, mainly chemical amorphization of alloys; and f) future trends of the in situ experiment, such as combinations with Auger valency electron spectroscopy and high-resolution electron microscopy.</p>","PeriodicalId":15690,"journal":{"name":"Journal of electron microscopy technique","volume":"12 3","pages":"201-18"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jemt.1060120304","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electron microscopy technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jemt.1060120304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

High-voltage electron microscopy has shown itself advantageous for the study of natural science, including biology, but especially for materials science. The most important advantage for materials science is for in situ experiments about the detailed processes of the phenomena that occur in bulk materials. The present paper is mainly concerned with several types of in situ experiments that have been carried out in the Research Center for Ultra-High Voltage Electron Microscopy, Osaka University. The following subjects have been studied: a) fundamental problems, such as the conditions necessary for in situ experiments, functional features of specimen treatment devices, and the effects of electron irradiation; b) the dislocation behavior of crystals under various conditions; c) high-temperature behavior of refractory materials, mainly ceramic composites; d) new applications of electron irradiation effects, such as amorphization of crystalline materials and electron-irradiation-induced foreign-atom implantation; e) environment-matter interaction, mainly chemical amorphization of alloys; and f) future trends of the in situ experiment, such as combinations with Auger valency electron spectroscopy and high-resolution electron microscopy.

大阪大学的超高压电子显微镜研究中心。
高压电子显微镜在包括生物学在内的自然科学,尤其是材料科学的研究中已显示出其优势。材料科学最重要的优势是可以对块状材料中发生的现象的详细过程进行原位实验。本文主要介绍了在大阪大学超高压电子显微镜研究中心进行的几种原位实验。研究了以下问题:a)基本问题,如原位实验所需的条件,样品处理装置的功能特征,电子辐照的影响;B)不同条件下晶体的位错行为;C)高温耐火材料,主要是陶瓷复合材料;D)电子辐照效应的新应用,如晶体材料的非晶化和电子辐照诱导的外来原子注入;E)环境-物质相互作用,主要是合金的化学非晶化;f)原位实验的未来发展趋势,如与俄歇价电子能谱和高分辨率电子显微镜的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信