{"title":"TiO2 coatings on titanium obtained by anodising in a 2% Na2SiO3 solution at various voltages","authors":"W. Jastrzębski, M. Wilk, L. Klimek, B. Śmielak","doi":"10.5604/01.3001.0054.1478","DOIUrl":null,"url":null,"abstract":"Commercially pure titanium is recognised as one of the most biocompatible materials used in everyday medicine, particularly in prosthodontics. However, its high reactivity with oxygen and low thermal expansion makes titanium difficult to process, making it less popular as a material for porcelain fused to metal substructures. Analysing the available literature studies, both positive and negative effects of the oxide layer on the titanium-ceramic bond have been found. The given work attempted to anodically create oxide coatings in a 2% Na2SiO3 solution on commercially pure titanium, which could serve as substructures for crowns and dental bridges.Grade 2 titanium discs (diameter 20 mm, height 5 mm) were ground and polished. The alloy composition was determined by X-ray fluorescence analysis. The samples were divided into six groups and subjected to anodic oxidation in a 2% Na2SiO3 solution at constant voltages: 230 V, 270 V, 300 V, 350 V, 400 V, and a time of t = 1 min. The obtained oxide layers were examined by X-ray diffraction, chemical composition analysis, and SEM observation.Coating thicknesses ranging from 0.65 μm to 13.2 μm were obtained. Besides titanium oxide, an amorphous phase is present in the anodised layer.It is crucial to provide the ideal voltage directly related to the employed solution to maintain the useable thickness of the oxide layers. Variations in oxide layer thickness beyond optimal value may lead to exfoliating if it exceeds 1 μm or present fractures if it subceeds 1 μm.Titanium oxide layers obtained by anodic oxidation are mainly tested on their biocompatibility and tissue integration so important in implantology. However, the given paper focuses on creating oxide layers that may strengthen the bond between titanium and dental ceramics.","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"176 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0054.1478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Commercially pure titanium is recognised as one of the most biocompatible materials used in everyday medicine, particularly in prosthodontics. However, its high reactivity with oxygen and low thermal expansion makes titanium difficult to process, making it less popular as a material for porcelain fused to metal substructures. Analysing the available literature studies, both positive and negative effects of the oxide layer on the titanium-ceramic bond have been found. The given work attempted to anodically create oxide coatings in a 2% Na2SiO3 solution on commercially pure titanium, which could serve as substructures for crowns and dental bridges.Grade 2 titanium discs (diameter 20 mm, height 5 mm) were ground and polished. The alloy composition was determined by X-ray fluorescence analysis. The samples were divided into six groups and subjected to anodic oxidation in a 2% Na2SiO3 solution at constant voltages: 230 V, 270 V, 300 V, 350 V, 400 V, and a time of t = 1 min. The obtained oxide layers were examined by X-ray diffraction, chemical composition analysis, and SEM observation.Coating thicknesses ranging from 0.65 μm to 13.2 μm were obtained. Besides titanium oxide, an amorphous phase is present in the anodised layer.It is crucial to provide the ideal voltage directly related to the employed solution to maintain the useable thickness of the oxide layers. Variations in oxide layer thickness beyond optimal value may lead to exfoliating if it exceeds 1 μm or present fractures if it subceeds 1 μm.Titanium oxide layers obtained by anodic oxidation are mainly tested on their biocompatibility and tissue integration so important in implantology. However, the given paper focuses on creating oxide layers that may strengthen the bond between titanium and dental ceramics.
期刊介绍:
The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]