Predictions on Flexible CdTe Solar Cell Performances by Artificial Neural Networks

Sevinj Ganbarova, S. Akkoyun, Vusal Mamedov, Huseyn Mamedov
{"title":"Predictions on Flexible CdTe Solar Cell Performances by Artificial Neural Networks","authors":"Sevinj Ganbarova, S. Akkoyun, Vusal Mamedov, Huseyn Mamedov","doi":"10.17776/csj.1312021","DOIUrl":null,"url":null,"abstract":"CdTe solar cells on ultra-thin glass substrates are light and flexible. Flexible cells are widely preferred modules in technological fields. The flexibility of these cells enables them to cope with deformations. The efficiency of these has reached 19%. In this work, we used artificial neural network (ANN) method for the determination the performance of flexible CdTe solar cells despite bending and time. The performances of the solar cell before and after bending have been predicted. According to the results from the ANN calculations using the experimental data in the literature, MSE values of ANN estimates range from 0.06% to 0.28%.","PeriodicalId":10906,"journal":{"name":"Cumhuriyet Science Journal","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cumhuriyet Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17776/csj.1312021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CdTe solar cells on ultra-thin glass substrates are light and flexible. Flexible cells are widely preferred modules in technological fields. The flexibility of these cells enables them to cope with deformations. The efficiency of these has reached 19%. In this work, we used artificial neural network (ANN) method for the determination the performance of flexible CdTe solar cells despite bending and time. The performances of the solar cell before and after bending have been predicted. According to the results from the ANN calculations using the experimental data in the literature, MSE values of ANN estimates range from 0.06% to 0.28%.
人工神经网络对柔性碲化镉太阳能电池性能的预测
超薄玻璃基板上的碲化镉太阳能电池轻巧灵活。柔性电池是技术领域广泛采用的模块。这些电池的柔性使其能够应对变形。其效率已达到 19%。在这项工作中,我们使用人工神经网络(ANN)方法来确定柔性碲化镉太阳能电池在弯曲和时间作用下的性能。我们预测了太阳能电池在弯曲前后的性能。根据使用文献中的实验数据进行的人工神经网络计算结果,人工神经网络估计值的 MSE 值在 0.06% 到 0.28% 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
51
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信