{"title":"Pengenalan Alfabet Sistem Isyarat Bahasa Indonesia (SIBI) Menggunakan Convolutional Neural Network","authors":"Indra Jiwana Thira, Dwizah Riana, Azriel Noer Ilhami, Brama Rizky Setia Dwinanda, Hana Choerunisya","doi":"10.33364/algoritma/v.20-2.1480","DOIUrl":null,"url":null,"abstract":"Tuli menempati peringkat keempat dalam statistik penyandang disabilitas di Indonesia dengan persentase sebesar 7,03%. Mereka menggunakan bahasa isyarat untuk berkomunikasi, baik itu dengan sesama penyandang tuli maupun individu yang tidak memiliki masalah pendengaran. Namun, kendala muncul karena sebagian kecil individu tanpa masalah pendengaran yang menguasai bahasa isyarat, khususnya Sistem Isyarat Bahasa Indonesia (SIBI). Akibatnya, berkomunikasi dengan penyandang tuli bisa menjadi tantangan. Penelitian ini memiliki tujuan untuk mengklasifikasikan alfabet pada SIBI, dengan pengecualian huruf J dan Z, yang terdiri dari total 24 kelas. Pendekatan klasifikasi ini dilakukan melalui perbandingan tiga arsitektur Convolutional Neural Network (CNN): MobileNetV2, MobileNetV3Small, dan MobileNetV3Large. Penelitian ini bermaksud menentukan arsitektur yang paling optimal. Hasil penelitian menunjukkan bahwa MobileNetV3Small menghasilkan model yang paling baik. Dalam pengujian menggunakan data tes, model ini mencapai akurasi sebesar 98,81% dengan menggunakan batchsize 32 dan menjalankan proses pelatihan selama 30 epoch.","PeriodicalId":371939,"journal":{"name":"Jurnal Algoritma","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Algoritma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33364/algoritma/v.20-2.1480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tuli menempati peringkat keempat dalam statistik penyandang disabilitas di Indonesia dengan persentase sebesar 7,03%. Mereka menggunakan bahasa isyarat untuk berkomunikasi, baik itu dengan sesama penyandang tuli maupun individu yang tidak memiliki masalah pendengaran. Namun, kendala muncul karena sebagian kecil individu tanpa masalah pendengaran yang menguasai bahasa isyarat, khususnya Sistem Isyarat Bahasa Indonesia (SIBI). Akibatnya, berkomunikasi dengan penyandang tuli bisa menjadi tantangan. Penelitian ini memiliki tujuan untuk mengklasifikasikan alfabet pada SIBI, dengan pengecualian huruf J dan Z, yang terdiri dari total 24 kelas. Pendekatan klasifikasi ini dilakukan melalui perbandingan tiga arsitektur Convolutional Neural Network (CNN): MobileNetV2, MobileNetV3Small, dan MobileNetV3Large. Penelitian ini bermaksud menentukan arsitektur yang paling optimal. Hasil penelitian menunjukkan bahwa MobileNetV3Small menghasilkan model yang paling baik. Dalam pengujian menggunakan data tes, model ini mencapai akurasi sebesar 98,81% dengan menggunakan batchsize 32 dan menjalankan proses pelatihan selama 30 epoch.