Modelling of novel bornoel analogs as Influenza A Virus inhibitors through genetic function approximation, comparative molecular fields, molecular docking, and ADMET/Pharmacokinetic studies

Mustapha Abdullahi , Adamu Uzairu , Gideon Adamu Shallangwa , Paul Andrew Mamza , Muhammad Tukur Ibrahim
{"title":"Modelling of novel bornoel analogs as Influenza A Virus inhibitors through genetic function approximation, comparative molecular fields, molecular docking, and ADMET/Pharmacokinetic studies","authors":"Mustapha Abdullahi ,&nbsp;Adamu Uzairu ,&nbsp;Gideon Adamu Shallangwa ,&nbsp;Paul Andrew Mamza ,&nbsp;Muhammad Tukur Ibrahim","doi":"10.1016/j.ipha.2023.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>Influenza A Virus (IAV) is a human respiratory pathogen prone to mutations and genome re-assortment leading to global pandemics. In this study, we applied the molecular modelling strategies such as, two-dimensional (2D), three-dimensional (3D)-quantitative structure–activity relationship (QSAR), and molecular docking simulation on a novel series of borneol compounds as influenza inhibitors. The best developed 2D-QSAR models, MLR (Q<sup>2</sup> ​= ​0.8735, R<sup>2</sup> <sub>(train)</sub> ​= ​0.9096) and ANN [3-2-1] (Q<sup>2</sup> ​= ​0.8987, R<sup>2</sup><sub>(train)</sub> ​= ​0.9171) revealed good and acceptable statistical validation metrics for the inhibitory activity predictions. The 3D-QSAR models were generated using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), which showed CoMFA_S ​+ ​E (Q<sup>2</sup> ​= ​0.559, R<sup>2</sup><sub>(train)</sub> ​= ​0.939) and CoMSIA_S ​+ ​E (Q<sup>2</sup> ​= ​0.577, R<sup>2</sup><sub>(train)</sub> ​= ​0.941) as the best-observed models in accordance with the model acceptability standards. In addition, the contour maps generated from the CoMFA and CoMSIA models illustrates the steric and electrostatic molecular field relationships with the inhibitory effects of the studied molecules. Moreover, the binding modes of the active ligands were studied through molecular docking simulation with the Human Hemagglutinin (HA) receptor of influenza A virus (A/Puerto Rico/8/34(H1N1)). The studied compounds revealed the formation of H-bonds, CH-bonds, and hydrophobic interactions with the active amino acid residues such as Asn 543, Asn 614, Asn 617, Leu 618, Ser 540, Lys 539, and Lys 621 in the HA binding cavity. The prediction of drug-likeness and ADMET properties of the compounds revealed their good bioavailability and pharmacokinetic profiling. This study may provide a valuable <em>in-silico</em> guideline for discovering novel potent influenza inhibitors.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":"2 2","pages":"Pages 190-203"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X23001181/pdfft?md5=a24a770f820d6cc9021c6b00a3d015cc&pid=1-s2.0-S2949866X23001181-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949866X23001181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza A Virus (IAV) is a human respiratory pathogen prone to mutations and genome re-assortment leading to global pandemics. In this study, we applied the molecular modelling strategies such as, two-dimensional (2D), three-dimensional (3D)-quantitative structure–activity relationship (QSAR), and molecular docking simulation on a novel series of borneol compounds as influenza inhibitors. The best developed 2D-QSAR models, MLR (Q2 ​= ​0.8735, R2 (train) ​= ​0.9096) and ANN [3-2-1] (Q2 ​= ​0.8987, R2(train) ​= ​0.9171) revealed good and acceptable statistical validation metrics for the inhibitory activity predictions. The 3D-QSAR models were generated using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), which showed CoMFA_S ​+ ​E (Q2 ​= ​0.559, R2(train) ​= ​0.939) and CoMSIA_S ​+ ​E (Q2 ​= ​0.577, R2(train) ​= ​0.941) as the best-observed models in accordance with the model acceptability standards. In addition, the contour maps generated from the CoMFA and CoMSIA models illustrates the steric and electrostatic molecular field relationships with the inhibitory effects of the studied molecules. Moreover, the binding modes of the active ligands were studied through molecular docking simulation with the Human Hemagglutinin (HA) receptor of influenza A virus (A/Puerto Rico/8/34(H1N1)). The studied compounds revealed the formation of H-bonds, CH-bonds, and hydrophobic interactions with the active amino acid residues such as Asn 543, Asn 614, Asn 617, Leu 618, Ser 540, Lys 539, and Lys 621 in the HA binding cavity. The prediction of drug-likeness and ADMET properties of the compounds revealed their good bioavailability and pharmacokinetic profiling. This study may provide a valuable in-silico guideline for discovering novel potent influenza inhibitors.

Abstract Image

通过遗传功能近似、比较分子场、分子对接和 ADMET/药代动力学研究,建立新型 Bornoel 类似物作为甲型流感病毒抑制剂的模型
甲型流感病毒(IAV)是一种人类呼吸道病原体,易发生突变和基因组重配,导致全球大流行。在这项研究中,我们采用了分子建模策略,如二维(2D)、三维(3D)-定量结构-活性关系(QSAR)和分子对接模拟,将一系列新型的龙脑醇化合物作为流感抑制剂。所开发的最佳二维-QSAR模型、MLR(Q2 = 0.8735,R2(train)= 0.9096)和ANN [3-2-1](Q2 = 0.8987,R2(train)= 0.9171)显示了良好且可接受的抑制活性预测统计验证指标。利用比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)生成的三维-QSAR 模型显示,CoMFA_S + E(Q2 = 0.559,R2(train) = 0.939)和 CoMSIA_S + E(Q2 = 0.577,R2(train) = 0.941)是符合模型可接受性标准的最佳观测模型。此外,由 CoMFA 和 CoMSIA 模型生成的等高线图说明了所研究分子的立体和静电分子场与抑制作用之间的关系。此外,通过与甲型流感病毒(A/波多黎各/8/34(H1N1))的人类血凝素(HA)受体进行分子对接模拟,研究了活性配体的结合模式。所研究的化合物与 HA 结合腔中的 Asn 543、Asn 614、Asn 617、Leu 618、Ser 540、Lys 539 和 Lys 621 等活性氨基酸残基形成了 H 键、CH 键和疏水相互作用。通过预测这些化合物的药物相似性和 ADMET 特性,发现它们具有良好的生物利用度和药代动力学特征。这项研究可为发现新型强效流感抑制剂提供宝贵的硅学指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信