Recommendations for improved tropical cyclone formation and position probabilistic Forecast products

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Jason P. Dunion , Chris Davis , Helen Titley , Helen Greatrex , Munehiko Yamaguchi , John Methven , Raghavendra Ashrit , Zhuo Wang , Hui Yu , Anne-Claire Fontan , Alan Brammer , Matthew Kucas , Matthew Ford , Philippe Papin , Fernando Prates , Carla Mooney , Andrew Kruczkiewicz , Paromita Chakraborty , Andrew Burton , Mark DeMaria , Jonathan L. Vigh
{"title":"Recommendations for improved tropical cyclone formation and position probabilistic Forecast products","authors":"Jason P. Dunion ,&nbsp;Chris Davis ,&nbsp;Helen Titley ,&nbsp;Helen Greatrex ,&nbsp;Munehiko Yamaguchi ,&nbsp;John Methven ,&nbsp;Raghavendra Ashrit ,&nbsp;Zhuo Wang ,&nbsp;Hui Yu ,&nbsp;Anne-Claire Fontan ,&nbsp;Alan Brammer ,&nbsp;Matthew Kucas ,&nbsp;Matthew Ford ,&nbsp;Philippe Papin ,&nbsp;Fernando Prates ,&nbsp;Carla Mooney ,&nbsp;Andrew Kruczkiewicz ,&nbsp;Paromita Chakraborty ,&nbsp;Andrew Burton ,&nbsp;Mark DeMaria ,&nbsp;Jonathan L. Vigh","doi":"10.1016/j.tcrr.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Prediction of the potentially devastating impact of landfalling tropical cyclones (TCs) relies substantially on numerical prediction systems. Due to the limited predictability of TCs and the need to express forecast confidence and possible scenarios, it is vital to exploit the benefits of dynamic ensemble forecasts in operational TC forecasts and warnings. RSMCs, TCWCs, and other forecast centers value probabilistic guidance for TCs, but the International Workshop on Tropical Cyclones (IWTC-9) found that the “pull-through” of probabilistic information to operational warnings using those forecasts is slow. IWTC-9 recommendations led to the formation of the WMO/WWRP Tropical Cyclone-Probabilistic Forecast Products (TC-PFP) project, which is also endorsed as a WMO Seamless GDPFS Pilot Project. The main goal of TC-PFP is to coordinate across forecast centers to help identify best practice guidance for probabilistic TC forecasts. TC-PFP is being implemented in 3 phases: Phase 1 (TC formation and position); Phase 2 (TC intensity and structure); and Phase 3 (TC related rainfall and storm surge). This article provides a summary of Phase 1 and reviews the current state of the science of probabilistic forecasting of TC formation and position. There is considerable variability in the nature and interpretation of forecast products based on ensemble information, making it challenging to transfer knowledge of best practices across forecast centers. Communication among forecast centers regarding the effectiveness of different approaches would be helpful for conveying best practices. Close collaboration with experts experienced in communicating complex probabilistic TC information and sharing of best practices between centers would help to ensure effective decisions can be made based on TC forecasts. Finally, forecast centers need timely access to ensemble information that has consistent, user-friendly ensemble information. Greater consistency across forecast centers in data accessibility, probabilistic forecast products, and warnings and their communication to users will produce more reliable information and support improved outcomes.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"12 4","pages":"Pages 241-258"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603223000528","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction of the potentially devastating impact of landfalling tropical cyclones (TCs) relies substantially on numerical prediction systems. Due to the limited predictability of TCs and the need to express forecast confidence and possible scenarios, it is vital to exploit the benefits of dynamic ensemble forecasts in operational TC forecasts and warnings. RSMCs, TCWCs, and other forecast centers value probabilistic guidance for TCs, but the International Workshop on Tropical Cyclones (IWTC-9) found that the “pull-through” of probabilistic information to operational warnings using those forecasts is slow. IWTC-9 recommendations led to the formation of the WMO/WWRP Tropical Cyclone-Probabilistic Forecast Products (TC-PFP) project, which is also endorsed as a WMO Seamless GDPFS Pilot Project. The main goal of TC-PFP is to coordinate across forecast centers to help identify best practice guidance for probabilistic TC forecasts. TC-PFP is being implemented in 3 phases: Phase 1 (TC formation and position); Phase 2 (TC intensity and structure); and Phase 3 (TC related rainfall and storm surge). This article provides a summary of Phase 1 and reviews the current state of the science of probabilistic forecasting of TC formation and position. There is considerable variability in the nature and interpretation of forecast products based on ensemble information, making it challenging to transfer knowledge of best practices across forecast centers. Communication among forecast centers regarding the effectiveness of different approaches would be helpful for conveying best practices. Close collaboration with experts experienced in communicating complex probabilistic TC information and sharing of best practices between centers would help to ensure effective decisions can be made based on TC forecasts. Finally, forecast centers need timely access to ensemble information that has consistent, user-friendly ensemble information. Greater consistency across forecast centers in data accessibility, probabilistic forecast products, and warnings and their communication to users will produce more reliable information and support improved outcomes.
关于改进热带气旋形成和位置概率预报产品的建议
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信