{"title":"Benggang segmentation via deep exchanging of digital orthophoto map and digital surface model features","authors":"Shengyu Shen , Jiasheng Chen , Dongbing Cheng , Honghu Liu , Tong Zhang","doi":"10.1016/j.iswcr.2023.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>Benggang is a typical fragmented erosional landscape in southern and southeastern China, posing significant risk to the local residents and economic development. Therefore, an efficient and accurate fine-grained segmentation method is crucial for monitoring the Benggang areas. In this paper, we propose a deep learning-based automatic segmentation method for Benggang by integrating high-resolution Digital Orthophoto Map (DOM) and Digital Surface Model (DSM) data. The DSM data is used to extract slope maps, aiming to capture primary morphological features. The proposed method consists of a dual-stream convolutional encoder-decoder network in which multiple cascaded convolutional layers and a skip connection scheme are used to extract morphological and visual features of the Benggang areas. The rich discriminative information in the DOM and slope data is fused by a channel exchanging mechanism that dynamically exchanges the most discriminative features from either the DOM or DSM stream according to their importance at the channel level. Evaluation experiments were conducted on a challenging dataset collected from Guangdong Province, China, and the results show that the proposed channel exchanging network based deep fusion method achieves 84.62% IoU in Benggang segmentation, outperforming several existing unimodal or multimodal baselines. The proposed multimodal segmentation method greatly improves the efficiency of large-scale discovery of Benggang, and thus is important for the management and restoration of Benggang in southern and southeastern China, as well as the monitoring of other similar erosional landscapes.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 3","pages":"Pages 589-599"},"PeriodicalIF":7.3000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000989/pdfft?md5=a6f346be8a93a1c4c004dc2dc22cd615&pid=1-s2.0-S2095633923000989-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000989","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Benggang is a typical fragmented erosional landscape in southern and southeastern China, posing significant risk to the local residents and economic development. Therefore, an efficient and accurate fine-grained segmentation method is crucial for monitoring the Benggang areas. In this paper, we propose a deep learning-based automatic segmentation method for Benggang by integrating high-resolution Digital Orthophoto Map (DOM) and Digital Surface Model (DSM) data. The DSM data is used to extract slope maps, aiming to capture primary morphological features. The proposed method consists of a dual-stream convolutional encoder-decoder network in which multiple cascaded convolutional layers and a skip connection scheme are used to extract morphological and visual features of the Benggang areas. The rich discriminative information in the DOM and slope data is fused by a channel exchanging mechanism that dynamically exchanges the most discriminative features from either the DOM or DSM stream according to their importance at the channel level. Evaluation experiments were conducted on a challenging dataset collected from Guangdong Province, China, and the results show that the proposed channel exchanging network based deep fusion method achieves 84.62% IoU in Benggang segmentation, outperforming several existing unimodal or multimodal baselines. The proposed multimodal segmentation method greatly improves the efficiency of large-scale discovery of Benggang, and thus is important for the management and restoration of Benggang in southern and southeastern China, as well as the monitoring of other similar erosional landscapes.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research