Mohammad Ubaidillah, Noor Rozzita, Mitha Aprilia Mufadilah, Nurhaliza Thamrin, Agung Nugroho Puspito, Kyung Min Kim
{"title":"Salt and Heat Stress Trigger Morpho-Physiological Changes, Antioxidant Enzyme and Secondary Metabolites Gene Expression in Rice (Oryza sativa L.)","authors":"Mohammad Ubaidillah, Noor Rozzita, Mitha Aprilia Mufadilah, Nurhaliza Thamrin, Agung Nugroho Puspito, Kyung Min Kim","doi":"10.4308/hjb.31.2.256-270","DOIUrl":null,"url":null,"abstract":"Climate change significantly increases salt and heat stress in rice plants. This condition causes plants to activate antioxidant enzymes and produce secondary metabolites. This study aimed to determine the morpho-physiological changes and gene expression profiles of antioxidant enzymes and secondary metabolites. This study used a completely randomized design factorial. The first factor was local rice varieties (IR64, Silaun, and Cigeulis), and the second factor was stress treatments (control, NaCl 150 mM, 40°C, and NaCl 150 mM + 40°C). The results showed that multiple stress significantly affected the plant height, stem length, stem diameter, leaf area, root length, total main root, plant biomass, necrotic length, chlorophyll content, relative water content, and plant ROS production. Multiple stress could up-regulate the gene expression of antioxidant enzymes (Mn-SOD, Cu/Zn SOD, Cytosolic APX, OsAPX1, CAT, OsCATA, and GPOD) in rice after stress combination treatments and increase the secondary metabolites gene expression (P5CS and GABA-T) in all rice varieties. Still, the OsNOMT gene was only active in the Cigeulis variety.","PeriodicalId":12927,"journal":{"name":"HAYATI Journal of Biosciences","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HAYATI Journal of Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4308/hjb.31.2.256-270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change significantly increases salt and heat stress in rice plants. This condition causes plants to activate antioxidant enzymes and produce secondary metabolites. This study aimed to determine the morpho-physiological changes and gene expression profiles of antioxidant enzymes and secondary metabolites. This study used a completely randomized design factorial. The first factor was local rice varieties (IR64, Silaun, and Cigeulis), and the second factor was stress treatments (control, NaCl 150 mM, 40°C, and NaCl 150 mM + 40°C). The results showed that multiple stress significantly affected the plant height, stem length, stem diameter, leaf area, root length, total main root, plant biomass, necrotic length, chlorophyll content, relative water content, and plant ROS production. Multiple stress could up-regulate the gene expression of antioxidant enzymes (Mn-SOD, Cu/Zn SOD, Cytosolic APX, OsAPX1, CAT, OsCATA, and GPOD) in rice after stress combination treatments and increase the secondary metabolites gene expression (P5CS and GABA-T) in all rice varieties. Still, the OsNOMT gene was only active in the Cigeulis variety.
期刊介绍:
HAYATI Journal of Biosciences (HAYATI J Biosci) is an international peer-reviewed and open access journal that publishes significant and important research from all area of biosciences fields such as biodiversity, biosystematics, ecology, physiology, behavior, genetics and biotechnology. All life forms, ranging from microbes, fungi, plants, animals, and human, including virus, are covered by HAYATI J Biosci. HAYATI J Biosci published by Department of Biology, Bogor Agricultural University, Indonesia and the Indonesian Society for Biology. We accept submission from all over the world. Our Editorial Board members are prominent and active international researchers in biosciences fields who ensure efficient, fair, and constructive peer-review process. All accepted articles will be published on payment of an article-processing charge, and will be freely available to all readers with worldwide visibility and coverage.