Louise Duquesne, Elhadji Anassour Laouan Sidi, C. Plante, Ying Liu, Naizhuo Zhao, Éric Lavigne, Kate Zinszer, Rita Sousa-Silva, Michel Fournier, Paul J. Villeneuve, David J. Kaiser, A. Smargiassi
{"title":"The influence of urban trees and total vegetation on asthma development in children","authors":"Louise Duquesne, Elhadji Anassour Laouan Sidi, C. Plante, Ying Liu, Naizhuo Zhao, Éric Lavigne, Kate Zinszer, Rita Sousa-Silva, Michel Fournier, Paul J. Villeneuve, David J. Kaiser, A. Smargiassi","doi":"10.1097/EE9.0000000000000280","DOIUrl":null,"url":null,"abstract":"Objective: We aimed to assess whether the influence of urban vegetation on asthma development in children (<13 years) varies by type (e.g., total vegetation, tree type, and grass) and season. Methods: We used a cohort of all children born in Montreal, Canada, between 2000 and 2015. Children and cases were identified from linked medico-administrative databases. Exposure to residential vegetation was estimated using the Normalized Difference Vegetation Index (NDVI) for total vegetation and using the total area covered by deciduous and evergreen crowns for trees in 250 m buffers centered on residential postal codes. Seasonal variations in vegetation were modeled by setting values to zero on days outside of pollen and leaf-on seasons. Cox models with vegetation exposures, age as a time axis, and adjusted for sex, material deprivation, and health region were used to estimate hazard ratios (HR) for asthma development. Results: We followed 352,946 children for a total of 1,732,064 person-years and identified 30,816 incident cases of asthma. While annual vegetation (total and trees) measures did not appear to be associated with asthma development, models for pollen and leaf-on seasons yielded significant nonlinear associations. The risk of developing asthma was lower in children exposed to high levels (>33,300 m2) of deciduous crown area for the leaf-on season (HR = 0.69; 95% confidence interval [CI] = 0.67, 0.72) and increased for the pollen season (HR = 1.07; 95% CI =1.02, 1.12), compared with unexposed children. Similar results were found with the Normalized Difference Vegetation Index. Conclusion: The relationship between urban vegetation and childhood asthma development is nonlinear and influenced by vegetation characteristics, from protective during the leaf-on season to harmful during the pollen season.","PeriodicalId":11713,"journal":{"name":"Environmental Epidemiology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/EE9.0000000000000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: We aimed to assess whether the influence of urban vegetation on asthma development in children (<13 years) varies by type (e.g., total vegetation, tree type, and grass) and season. Methods: We used a cohort of all children born in Montreal, Canada, between 2000 and 2015. Children and cases were identified from linked medico-administrative databases. Exposure to residential vegetation was estimated using the Normalized Difference Vegetation Index (NDVI) for total vegetation and using the total area covered by deciduous and evergreen crowns for trees in 250 m buffers centered on residential postal codes. Seasonal variations in vegetation were modeled by setting values to zero on days outside of pollen and leaf-on seasons. Cox models with vegetation exposures, age as a time axis, and adjusted for sex, material deprivation, and health region were used to estimate hazard ratios (HR) for asthma development. Results: We followed 352,946 children for a total of 1,732,064 person-years and identified 30,816 incident cases of asthma. While annual vegetation (total and trees) measures did not appear to be associated with asthma development, models for pollen and leaf-on seasons yielded significant nonlinear associations. The risk of developing asthma was lower in children exposed to high levels (>33,300 m2) of deciduous crown area for the leaf-on season (HR = 0.69; 95% confidence interval [CI] = 0.67, 0.72) and increased for the pollen season (HR = 1.07; 95% CI =1.02, 1.12), compared with unexposed children. Similar results were found with the Normalized Difference Vegetation Index. Conclusion: The relationship between urban vegetation and childhood asthma development is nonlinear and influenced by vegetation characteristics, from protective during the leaf-on season to harmful during the pollen season.