Existence of the solutions to the Brocard–Ramanujan problem for norm forms

Wataru Takeda
{"title":"Existence of the solutions to the Brocard–Ramanujan problem for norm forms","authors":"Wataru Takeda","doi":"10.1090/bproc/181","DOIUrl":null,"url":null,"abstract":"<p>The Brocard–Ramanujan problem, which is an unsolved problem in number theory, is to find integer solutions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis x comma script l right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(x,\\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x squared minus 1 equals script l factorial\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x^2-1=\\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Many analogs of this problem are currently being considered. As one example, it is known that there are at most only finitely many algebraic integer solutions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis x comma script l right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(x, \\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, up to a unit factor, to the equations <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript upper K Baseline left-parenthesis x right-parenthesis equals script l factorial\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N_K(x) = \\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript upper K\"> <mml:semantics> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">N_K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the norms of number fields <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K slash bold upper Q\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K/\\mathbf Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we construct infinitely many number fields <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript upper K Baseline left-parenthesis x right-parenthesis equals script l factorial\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N_K(x) = \\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"22\"> <mml:semantics> <mml:mn>22</mml:mn> <mml:annotation encoding=\"application/x-tex\">22</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solutions for positive integers <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Brocard–Ramanujan problem, which is an unsolved problem in number theory, is to find integer solutions ( x , ) (x,\ell ) of x 2 1 = ! x^2-1=\ell ! . Many analogs of this problem are currently being considered. As one example, it is known that there are at most only finitely many algebraic integer solutions ( x , ) (x, \ell ) , up to a unit factor, to the equations N K ( x ) = ! N_K(x) = \ell ! , where N K N_K are the norms of number fields K / Q K/\mathbf Q . In this paper, we construct infinitely many number fields K K such that N K ( x ) = ! N_K(x) = \ell ! has at least 22 22 solutions for positive integers \ell .

规范形式的布罗卡尔-拉马努扬问题解的存在性
布罗卡尔-拉马努扬问题是数论中的一个未解难题,其目的是找到 x 2 - 1 = ℓ 的整数解 ( x , ℓ ) (x,\ell ) ! x^2-1=\ell ! .这个问题的许多类似问题目前都在研究之中。举例来说,已知 N K ( x ) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ ! N_K(x) = \ell ! 其中 N K N_K 是数域 K / Q K/\mathbf Q 的规范。在本文中,我们构造了无限多的数域 K K,使得 N K ( x ) = ℓ ! N_K(x) = \ell ! 对于正整数 ℓ \ell 至少有 22 22 个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信