Shape‐optimization of extrusion‐dies via parameterized physics‐informed neural networks

PAMM Pub Date : 2023-11-20 DOI:10.1002/pamm.202300203
Steffen Tillmann, Daniel Hilger, N. Hosters, Stefanie Elgeti
{"title":"Shape‐optimization of extrusion‐dies via parameterized physics‐informed neural networks","authors":"Steffen Tillmann, Daniel Hilger, N. Hosters, Stefanie Elgeti","doi":"10.1002/pamm.202300203","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach to efficiently optimize the design of extrusion dies. Extrusion dies, which are relevant to the manufacturing process of plastics profile extrusion, traditionally require time‐consuming iterations between manual testing and die adjustments. As an alternative, numerical optimization can be used to obtain a high quality initial design and thereby reduce the number of adjustments to the actual die. However, numerical optimization can be computationally expensive, so the use of surrogate models can be helpful to improve efficiency. The latter is the goal of this work. Our method uses physics‐informed neural networks (PINNs) that directly incorporate a free‐form deformation (FFD) approach to allow for geometric variations. The FFD approach allows for a wide range of domain deformations, while the fully trained PINN ensures fast evaluation of the objective function. Using a two‐dimensional model of an extrusion die for demonstration, we detail the integration of the FFD method into the PINN model and discuss its potential in the three‐dimensional context.","PeriodicalId":510616,"journal":{"name":"PAMM","volume":"184 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pamm.202300203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an approach to efficiently optimize the design of extrusion dies. Extrusion dies, which are relevant to the manufacturing process of plastics profile extrusion, traditionally require time‐consuming iterations between manual testing and die adjustments. As an alternative, numerical optimization can be used to obtain a high quality initial design and thereby reduce the number of adjustments to the actual die. However, numerical optimization can be computationally expensive, so the use of surrogate models can be helpful to improve efficiency. The latter is the goal of this work. Our method uses physics‐informed neural networks (PINNs) that directly incorporate a free‐form deformation (FFD) approach to allow for geometric variations. The FFD approach allows for a wide range of domain deformations, while the fully trained PINN ensures fast evaluation of the objective function. Using a two‐dimensional model of an extrusion die for demonstration, we detail the integration of the FFD method into the PINN model and discuss its potential in the three‐dimensional context.
通过参数化物理信息神经网络优化挤压模的形状
本文介绍了一种有效优化挤压模具设计的方法。挤压模具与塑料型材挤压的制造工艺有关,传统上需要在人工测试和模具调整之间进行耗时的反复试验。作为一种替代方法,数值优化可用于获得高质量的初始设计,从而减少实际模具的调整次数。然而,数值优化的计算成本可能很高,因此使用代用模型有助于提高效率。后者正是这项工作的目标。我们的方法使用物理信息神经网络 (PINN),直接结合自由形态变形 (FFD) 方法,以实现几何变化。FFD 方法允许各种域变形,而经过全面训练的 PINN 可确保快速评估目标函数。我们使用挤压模具的二维模型进行演示,详细介绍了如何将 FFD 方法集成到 PINN 模型中,并讨论了其在三维环境中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信