Unveiling the Robust Struct-Electromagnetic Characteristics of CdAB2 Chalcopyrite (A = Cr, Mn, Fe; B = P, As): A Comprehensive Ab-Initio Study

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
D. Vijayalakshmi, T. Ramachandran, G. Jaiganesh, G. Kalpana, F. Hamed
{"title":"Unveiling the Robust Struct-Electromagnetic Characteristics of CdAB2 Chalcopyrite (A = Cr, Mn, Fe; B = P, As): A Comprehensive Ab-Initio Study","authors":"D. Vijayalakshmi, T. Ramachandran, G. Jaiganesh, G. Kalpana, F. Hamed","doi":"10.1155/2023/1754324","DOIUrl":null,"url":null,"abstract":"We present a comprehensive investigation of the electromagnetic properties of CdAB2 compounds, where A represents Cr, Mn, or Fe, and B denotes P or As. To investigate the spin-polarized behavior of these compounds the A atoms were substituted at the Group IV (Ge) position in CdGeB2 in the chalcopyrite crystal structure. Our results reveal that all the CdAB2 compounds exhibit compelling spin-splitting of energy states near the Fermi level (EF). Notably, CdAB2 materials with A = Cr and Mn exhibit intriguing half-metallic ferromagnetic (HMF) characteristics, with the calculated total magnetic moments of 2.00 and 3.00 µB/f.u., respectively. The HMF properties originated in CdAB2 (A = Cr and Mn; B = P, As) these compounds owing to the hybridization of partially filled -3d(t2g) states of A atoms with the p-states of B (P, As) atoms, with minor contributions from Cd’s-like states. In contrast, CdFeB2 displays distinct behavior, demonstrating spin-splitting of energy levels around the EF indicative of a stable ferromagnetic (FM) state and the absence of HMF at their equilibrium volume. The calculated total magnetic moments for CdFeP2 and CdFeAs2 are about 1.83 (1.64 µB/f.u.) and 1.94 µB/f.u. (1.84 µB/f.u.) under generalized gradient approximation (GGA) (local spin density approximation (LSDA)) approximations, respectively. Perhaps these CdAB2 compounds (A = Cr and Mn; B = P, As) with HMF characteristic within both LSDA and GGA formalisms makes them highly promising candidates for spin injectors in the spintronic device applications. Furthermore, their semiconducting nature renders CdCrB2 and CdMnB2 materials compatible with silicon and other semiconducting lattices, enhancing their potential practical applications in the spintronic technologies. In conclusion, this study presents a thorough exploration of the robust electronic and magnetic properties of CdAB2 chalcopyrites, offering exciting prospects for their utilization in the future spintronic applications.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/1754324","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive investigation of the electromagnetic properties of CdAB2 compounds, where A represents Cr, Mn, or Fe, and B denotes P or As. To investigate the spin-polarized behavior of these compounds the A atoms were substituted at the Group IV (Ge) position in CdGeB2 in the chalcopyrite crystal structure. Our results reveal that all the CdAB2 compounds exhibit compelling spin-splitting of energy states near the Fermi level (EF). Notably, CdAB2 materials with A = Cr and Mn exhibit intriguing half-metallic ferromagnetic (HMF) characteristics, with the calculated total magnetic moments of 2.00 and 3.00 µB/f.u., respectively. The HMF properties originated in CdAB2 (A = Cr and Mn; B = P, As) these compounds owing to the hybridization of partially filled -3d(t2g) states of A atoms with the p-states of B (P, As) atoms, with minor contributions from Cd’s-like states. In contrast, CdFeB2 displays distinct behavior, demonstrating spin-splitting of energy levels around the EF indicative of a stable ferromagnetic (FM) state and the absence of HMF at their equilibrium volume. The calculated total magnetic moments for CdFeP2 and CdFeAs2 are about 1.83 (1.64 µB/f.u.) and 1.94 µB/f.u. (1.84 µB/f.u.) under generalized gradient approximation (GGA) (local spin density approximation (LSDA)) approximations, respectively. Perhaps these CdAB2 compounds (A = Cr and Mn; B = P, As) with HMF characteristic within both LSDA and GGA formalisms makes them highly promising candidates for spin injectors in the spintronic device applications. Furthermore, their semiconducting nature renders CdCrB2 and CdMnB2 materials compatible with silicon and other semiconducting lattices, enhancing their potential practical applications in the spintronic technologies. In conclusion, this study presents a thorough exploration of the robust electronic and magnetic properties of CdAB2 chalcopyrites, offering exciting prospects for their utilization in the future spintronic applications.
揭示 CdAB2 黄铜矿(A = Cr、Mn、Fe;B = P、As)的强结构电磁特性:全面的 Ab-Initio 研究
我们对 CdAB2 化合物的电磁特性进行了全面研究,其中 A 代表铬、锰或铁,B 代表磷或砷。为了研究这些化合物的自旋极化行为,我们在黄铜矿晶体结构中的 CdGeB2 中将 A 原子置换到了第 IV 族(Ge)位置。我们的研究结果表明,所有 CdAB2 化合物在费米级(EF)附近的能态都表现出令人信服的自旋分裂。值得注意的是,A = Cr 和 Mn 的 CdAB2 材料表现出令人好奇的半金属铁磁(HMF)特性,计算得出的总磁矩分别为 2.00 和 3.00 µB/f.u。CdAB2(A = 铬和锰,B = 铅、砷)这些化合物的 HMF 特性源于 A 原子的部分填充 -3d(t2g)态与 B(铅、砷)原子的 p 态的杂化,以及镉类态的少量贡献。相比之下,CdFeB2 的表现则截然不同,其 EF 周围能级的自旋分裂表明了稳定的铁磁(FM)态,而且在其平衡体积下不存在 HMF。根据广义梯度近似(GGA)(局部自旋密度近似(LSDA))近似计算,CdFeP2 和 CdFeAs2 的总磁矩分别约为 1.83(1.64 µB/f.u.)和 1.94 µB/f.u.(1.84 µB/f.u.)。也许这些 CdAB2 化合物(A = Cr 和 Mn;B = P、As)在 LSDA 和 GGA 形式下都具有 HMF 特性,因此非常有希望成为自旋电子器件应用中的自旋注入器。此外,它们的半导体性质使 CdCrB2 和 CdMnB2 材料与硅和其他半导体晶格兼容,增强了它们在自旋电子技术中的潜在实际应用。总之,本研究深入探讨了 CdAB2 黄铜矿强大的电子和磁性能,为它们在未来的自旋电子应用中的应用提供了令人兴奋的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信