{"title":"BIFURCATION ANALYSIS AND CHAOS CONTROL OF DISCRETE PREDATOR–PREY MODEL WITH ADDITIVE ALLEE EFFECT","authors":"Hanghang Li, Xinli Hu","doi":"10.1142/s0218339023500493","DOIUrl":null,"url":null,"abstract":"This paper presents a study of a discrete prey–predator model with additive Allee effect. The model is discretized using the forward Euler method, and the system is analyzed using bifurcation theory and chaos control. The equilibrium point of the discrete system is obtained through equilibrium analysis, and the stability of the equilibrium point is determined by analyzing the parameter conditions. The study also establishes the existence and direction of Neimark–Sacker bifurcation at the positive equilibrium point. The paper proposes two control strategies to manage chaotic behavior and Neimark–Sacker bifurcation: exponential control and hybrid feedback control. These control methods are demonstrated to be effective in controlling the chaotic behavior and bifurcation of the system through numerical simulation. Overall, the results of the study provide important insights into the dynamics of the discrete prey–predator model with additive Allee effect, as well as effective methods for controlling chaos and bifurcation in the system.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500493","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a study of a discrete prey–predator model with additive Allee effect. The model is discretized using the forward Euler method, and the system is analyzed using bifurcation theory and chaos control. The equilibrium point of the discrete system is obtained through equilibrium analysis, and the stability of the equilibrium point is determined by analyzing the parameter conditions. The study also establishes the existence and direction of Neimark–Sacker bifurcation at the positive equilibrium point. The paper proposes two control strategies to manage chaotic behavior and Neimark–Sacker bifurcation: exponential control and hybrid feedback control. These control methods are demonstrated to be effective in controlling the chaotic behavior and bifurcation of the system through numerical simulation. Overall, the results of the study provide important insights into the dynamics of the discrete prey–predator model with additive Allee effect, as well as effective methods for controlling chaos and bifurcation in the system.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.