{"title":"Deep Learning-Based Sentiment and Stance Analysis of Tweets About Vaccination","authors":"D. Küçük, Nursal Arıcı","doi":"10.4018/ijswis.333865","DOIUrl":null,"url":null,"abstract":"Sentiment analysis and stance detection are interrelated problems of affective computing, and their outputs commonly complement each other. The focus of this article is to determine sentiments and stances of Twitter users about vaccination. A tweet dataset on COVID-19 vaccination is compiled and jointly annotated with sentiment and stance. This deep learning approach employs BERT, which is a model based on pre-trained transformers. The generative deep learning model, ChatGPT, is also used for stance and sentiment analysis on the dataset. ChatGPT achieves the best performance for stance detection, while BERT is the best performer for sentiment analysis. This study is the first one to observe stance and sentiment detection performance of ChatGPT on health-related tweets. This article also includes a full-fledged system proposal based on automatic sentiment and stance analysis. COVID-19 pandemic is an impactful global public health phenomenon, and hence, joint extraction of sentiments and stances from health-related tweets can profoundly contribute to health-related decision-making processes.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"35 10","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.333865","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sentiment analysis and stance detection are interrelated problems of affective computing, and their outputs commonly complement each other. The focus of this article is to determine sentiments and stances of Twitter users about vaccination. A tweet dataset on COVID-19 vaccination is compiled and jointly annotated with sentiment and stance. This deep learning approach employs BERT, which is a model based on pre-trained transformers. The generative deep learning model, ChatGPT, is also used for stance and sentiment analysis on the dataset. ChatGPT achieves the best performance for stance detection, while BERT is the best performer for sentiment analysis. This study is the first one to observe stance and sentiment detection performance of ChatGPT on health-related tweets. This article also includes a full-fledged system proposal based on automatic sentiment and stance analysis. COVID-19 pandemic is an impactful global public health phenomenon, and hence, joint extraction of sentiments and stances from health-related tweets can profoundly contribute to health-related decision-making processes.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.