Silicon-based Optoelectronic Heterogeneous Integration for Optical Interconnection

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Leliang Li, Guike Li, Zhao Zhang, Jian Liu, Nanjian Wu, Kai-You Wang, Nan Qi, Liyuan Liu
{"title":"Silicon-based Optoelectronic Heterogeneous Integration for Optical Interconnection","authors":"Leliang Li, Guike Li, Zhao Zhang, Jian Liu, Nanjian Wu, Kai-You Wang, Nan Qi, Liyuan Liu","doi":"10.1088/1674-1056/ad0e5b","DOIUrl":null,"url":null,"abstract":"The performance of optical interconnection has improved dramatically in recent years. Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection, which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip, but also improves the system performance through advanced heterogeneous integrated packaging. This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection. The research status, development trend and application of ultra-low loss optical waveguides, high-speed detectors, high-speed modulators, lasers and 2D, 2.5D, 3D and monolithic integration are focused on.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad0e5b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of optical interconnection has improved dramatically in recent years. Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection, which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip, but also improves the system performance through advanced heterogeneous integrated packaging. This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection. The research status, development trend and application of ultra-low loss optical waveguides, high-speed detectors, high-speed modulators, lasers and 2D, 2.5D, 3D and monolithic integration are focused on.
用于光互连的硅基光电异质集成
近年来,光互连的性能有了显著提高。硅基光电异质集成是实现高性能光互连的关键推动因素,它不仅能提供原生硅衬底所不具备的光增益,在芯片上实现完整的光子功能,还能通过先进的异质集成封装提高系统性能。本文综述了硅基光电异质集成在高性能光互连领域的最新进展。重点介绍了超低损耗光波导、高速探测器、高速调制器、激光器以及 2D、2.5D、3D 和单片集成的研究现状、发展趋势和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信