Xin Teng, Junan Gao, Zuobo Yang, Xin Liang, Xiaokuan Wu, Jimmy Yun, Jie Zhang
{"title":"RuO2@IrO2/C Core-Shell Structure Catalyst for Efficient and Durable Acidic Oxygen Evolution","authors":"Xin Teng, Junan Gao, Zuobo Yang, Xin Liang, Xiaokuan Wu, Jimmy Yun, Jie Zhang","doi":"10.3390/catal13121456","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane (PEM) water electrolysis for hydrogen production has a high current density and overall efficiency, and is a very promising hydrogen production strategy. However, its application is limited by the high anodic overpotential for oxygen evolution and the instability of catalysts. Therefore, anodic catalysts with a high activity and durability under acidic conditions need further research. Herein, we first synthesized the key intermediate Ru@Ir core-shell structures by controlling nanocrystals, then loaded them onto a carbon support and calcined to obtain a RuO2@IrO2/C core-shell nanocatalyst with a size smaller than 5 nm, whose activity exceeded that of commercial RuO2 and commercial IrO2. After a 200 h stability test, the catalyst did not show significant performance degradation or structural degeneration. Finally, the prepared catalyst was assembled into a PEM electrolyzer showing the same results as the three-electrode tests, demonstrating its potential for practical applications and providing new insights for designing nanocatalysts suitable for industrialized PEM water electrolysis to produce hydrogen","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"23 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal13121456","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proton exchange membrane (PEM) water electrolysis for hydrogen production has a high current density and overall efficiency, and is a very promising hydrogen production strategy. However, its application is limited by the high anodic overpotential for oxygen evolution and the instability of catalysts. Therefore, anodic catalysts with a high activity and durability under acidic conditions need further research. Herein, we first synthesized the key intermediate Ru@Ir core-shell structures by controlling nanocrystals, then loaded them onto a carbon support and calcined to obtain a RuO2@IrO2/C core-shell nanocatalyst with a size smaller than 5 nm, whose activity exceeded that of commercial RuO2 and commercial IrO2. After a 200 h stability test, the catalyst did not show significant performance degradation or structural degeneration. Finally, the prepared catalyst was assembled into a PEM electrolyzer showing the same results as the three-electrode tests, demonstrating its potential for practical applications and providing new insights for designing nanocatalysts suitable for industrialized PEM water electrolysis to produce hydrogen
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.