Joe Butchers, Sam Williamson, Julian Booker, Suman Raj Pradhan, Prem Bikram Karki, Biraj Gautam, Bikram Raj Pradhan, Prajwal Sapkota
{"title":"A Methodology for Renovation of Micro-Hydropower Plants: A Case Study Using a Turgo Turbine in Nepal","authors":"Joe Butchers, Sam Williamson, Julian Booker, Suman Raj Pradhan, Prem Bikram Karki, Biraj Gautam, Bikram Raj Pradhan, Prajwal Sapkota","doi":"10.20900/jsr20230015","DOIUrl":null,"url":null,"abstract":"For off-grid communities, micro-hydropower continues to provide affordable and reliable electricity access across the world. In Nepal, despite ongoing development of large-scale hydropower projects and the extension of the national grid, there remain many off-grid communities that depend on micro-hydropower plants. Over time, these systems are prone to erosion from sediment in the water, which, together with other degrading mechanical and environmental effects, may lead to reduced reliability and potential failure. Extreme weather and natural disasters can also cause catastrophic failure of the plant and its infrastructure. In such cases, Nepali micro-hydropower companies are best placed to conduct renovation works. Where renovation is required, the selection of a different turbine type could be beneficial. Recent work has demonstrated the potential of the Turgo turbine for use in Nepal due to several advantageous features. In this paper, a methodology is applied to explore the feasibility of a site for refurbishment considering environmental, social, technical, economic, and legal factors. Subsequently, a series of design and costing activities are used to demonstrate that the Turgo turbine can be implemented. A Turgo turbine design is scaled appropriately and manufactured by a Nepali company. The turbine demonstrated an increase in","PeriodicalId":275909,"journal":{"name":"Journal of Sustainability Research","volume":"19 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20900/jsr20230015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For off-grid communities, micro-hydropower continues to provide affordable and reliable electricity access across the world. In Nepal, despite ongoing development of large-scale hydropower projects and the extension of the national grid, there remain many off-grid communities that depend on micro-hydropower plants. Over time, these systems are prone to erosion from sediment in the water, which, together with other degrading mechanical and environmental effects, may lead to reduced reliability and potential failure. Extreme weather and natural disasters can also cause catastrophic failure of the plant and its infrastructure. In such cases, Nepali micro-hydropower companies are best placed to conduct renovation works. Where renovation is required, the selection of a different turbine type could be beneficial. Recent work has demonstrated the potential of the Turgo turbine for use in Nepal due to several advantageous features. In this paper, a methodology is applied to explore the feasibility of a site for refurbishment considering environmental, social, technical, economic, and legal factors. Subsequently, a series of design and costing activities are used to demonstrate that the Turgo turbine can be implemented. A Turgo turbine design is scaled appropriately and manufactured by a Nepali company. The turbine demonstrated an increase in