{"title":"Application of Unconventional External-Field Treatments in Air Pollutants Removal over Zeolite-Based Adsorbents/Catalysts","authors":"Haodan Cheng, Xiaoning Ren, Yuan Yao, Xiaolong Tang, Honghong Yi, Fengyu Gao, Yuansong Zhou, Qingjun Yu","doi":"10.3390/catal13121461","DOIUrl":null,"url":null,"abstract":"Zeolite-based materials are widely used as adsorbents and catalysts for purifying air pollutants like NOx and VOCs due to abundant pore structure, regular pore distribution, and numerous ion exchange sites. Thermal treatment is a necessary procedure for both removing impurities in pores and promoting the metal active dispersed evenly before the zeolite-based adsorbents/catalysts were applied for purifying the NOx/VOCs. Nevertheless, the conventional thermal field treatment (i.e., high-temperature calcination, high-temperature purging, etc.) takes large energy consumption. In contrast, unconventional external-field treatments such as non-thermal plasma and microwave show significant advantages of high efficiency, low energy consumption as well and low pollution, which were used to substitute the traditional thermal treatment in many fields. In this paper, the roles of non-thermal plasma or microwave in the adsorption/catalysis of the NOx/VOCs are reviewed from three aspects assisting activation of materials, cooperative catalysis process, and assisting zeolites synthesis. The reasons for unconventional treatments in improving textural properties, active sites, performance, etc. of zeolite-based materials were illuminated in detail. Moreover, the influences of various parameters (i.e., power, time, temperature, etc.) on the above aspects are elaborated. It is hoped that this review could provide some advanced guidance for the researchers to develop highly efficient materials.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"4 ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal13121461","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zeolite-based materials are widely used as adsorbents and catalysts for purifying air pollutants like NOx and VOCs due to abundant pore structure, regular pore distribution, and numerous ion exchange sites. Thermal treatment is a necessary procedure for both removing impurities in pores and promoting the metal active dispersed evenly before the zeolite-based adsorbents/catalysts were applied for purifying the NOx/VOCs. Nevertheless, the conventional thermal field treatment (i.e., high-temperature calcination, high-temperature purging, etc.) takes large energy consumption. In contrast, unconventional external-field treatments such as non-thermal plasma and microwave show significant advantages of high efficiency, low energy consumption as well and low pollution, which were used to substitute the traditional thermal treatment in many fields. In this paper, the roles of non-thermal plasma or microwave in the adsorption/catalysis of the NOx/VOCs are reviewed from three aspects assisting activation of materials, cooperative catalysis process, and assisting zeolites synthesis. The reasons for unconventional treatments in improving textural properties, active sites, performance, etc. of zeolite-based materials were illuminated in detail. Moreover, the influences of various parameters (i.e., power, time, temperature, etc.) on the above aspects are elaborated. It is hoped that this review could provide some advanced guidance for the researchers to develop highly efficient materials.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.