The population structure of Nepeta pamirensis at different altitudes in the Pamirs (Tajikistan)

IF 0.7 Q4 PLANT SCIENCES
Alexey Yurievich Astashenkov, V.A. Cheryomushkina, Maryio Tilloevich Boboev
{"title":"The population structure of Nepeta pamirensis at different altitudes in the Pamirs (Tajikistan)","authors":"Alexey Yurievich Astashenkov, V.A. Cheryomushkina, Maryio Tilloevich Boboev","doi":"10.14719/pst.2630","DOIUrl":null,"url":null,"abstract":"The structure of alpine plant populations is one of the main criteria for assessing the current state of alpine flora. Species of the genus Nepeta, most of which belong to alpine plants, can be universal objects for assessing changes in environmental conditions, including the impact of anthropogenic pressure. The article discusses the ontogenetic structure and population size in connection with the change in the life form of Nepeta pamirensis at different heights of the Pamirs (3060-4250 m a.s.l.). Our research showed that the ontogenetic spectra of different populations are different. These differences are linked to changes in the life form, the length of ontogenesis and how well seeds reproduce. Populations were studied using transects. The individual seed was taken as the counting unit. In total, 3 populations were studied and more than 750 individuals of different ontogenetic states were included in the analysis. The ontogenetic structure of populations was characterized using basic demographic indicators: the recovery index, ageing index, generative index and the ecological density index. Depending on the altitude gradient, the species was characterized by different efficiencies of seed reproduction, which determined the different densities of individuals in plant communities of distribution. In general, with an increase in the height of distribution of a species, the structure of the population became more stable.","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The structure of alpine plant populations is one of the main criteria for assessing the current state of alpine flora. Species of the genus Nepeta, most of which belong to alpine plants, can be universal objects for assessing changes in environmental conditions, including the impact of anthropogenic pressure. The article discusses the ontogenetic structure and population size in connection with the change in the life form of Nepeta pamirensis at different heights of the Pamirs (3060-4250 m a.s.l.). Our research showed that the ontogenetic spectra of different populations are different. These differences are linked to changes in the life form, the length of ontogenesis and how well seeds reproduce. Populations were studied using transects. The individual seed was taken as the counting unit. In total, 3 populations were studied and more than 750 individuals of different ontogenetic states were included in the analysis. The ontogenetic structure of populations was characterized using basic demographic indicators: the recovery index, ageing index, generative index and the ecological density index. Depending on the altitude gradient, the species was characterized by different efficiencies of seed reproduction, which determined the different densities of individuals in plant communities of distribution. In general, with an increase in the height of distribution of a species, the structure of the population became more stable.
帕米尔(塔吉克斯坦)不同海拔地区 Nepeta pamirensis 的种群结构
高山植物种群结构是评估高山植物现状的主要标准之一。大部分属于高山植物的涅佩塔属(Nepeta)物种可以作为评估环境条件变化(包括人为压力的影响)的通用对象。文章讨论了帕米尔高原不同高度(海拔 3060-4250 米)Nepeta pamirensis 生命形态变化相关的本体结构和种群数量。我们的研究表明,不同种群的个体发育光谱是不同的。这些差异与生命形式的变化、发育期的长短以及种子的繁殖能力有关。我们利用横断面对种群进行了研究。单粒种子作为计数单位。总共研究了 3 个种群,超过 750 个不同发育阶段的个体被纳入分析。利用基本的人口统计指标:恢复指数、老龄化指数、生成指数和生态密度指数,对种群的个体发育结构进行了描述。根据海拔梯度的不同,物种的种子繁殖效率也不同,这决定了植物群落分布中个体密度的不同。一般来说,随着物种分布高度的增加,种群结构变得更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Science Today
Plant Science Today PLANT SCIENCES-
CiteScore
1.50
自引率
11.10%
发文量
177
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信