Mohd Shahril Kamarudin, Abderrahim Zermane, Nur Aliah Fatin Mohd Nizam Ong, Noorazmin Ab Rasid, Shafizah Masuri, Mohd Zahirasri Mohd Tohir
{"title":"Health Risk Assessment of Pollutant Emissions from Coal-fired Power Plant: A Case Study in Malaysia","authors":"Mohd Shahril Kamarudin, Abderrahim Zermane, Nur Aliah Fatin Mohd Nizam Ong, Noorazmin Ab Rasid, Shafizah Masuri, Mohd Zahirasri Mohd Tohir","doi":"10.47836/pjst.32.1.10","DOIUrl":null,"url":null,"abstract":"Coal-fired power plants (CFPPs) are Malaysia’s primary electricity source, but their emissions adversely affect human health, organism growth, climate change, and the environment. The carbon, hydrogen, and sulphur content of coal make it a viable option for electricity generation. However, the by-products from leaching, volatilisation, melting, decomposition, oxidation, hydration, and other chemical reactions significantly negatively impact the environment and human health. This study aims to quantify the emissions from a coal-fired power plant, investigate the interplay between different emissions, simulate the dispersion of emissions, and assess their health impact through a health risk assessment. The results indicate that SO2 is the primary contributor to emissions and its impact on human health is a concern. The health effects, both chronic and acute, are more pronounced in children than in adults. This study combines real-time emissions data and simulations to assess emissions’ health impact, raising awareness about the emissions from coal-fired power plants. Furthermore, the findings can potentially enhance working conditions for employees and promote environmental health.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.32.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coal-fired power plants (CFPPs) are Malaysia’s primary electricity source, but their emissions adversely affect human health, organism growth, climate change, and the environment. The carbon, hydrogen, and sulphur content of coal make it a viable option for electricity generation. However, the by-products from leaching, volatilisation, melting, decomposition, oxidation, hydration, and other chemical reactions significantly negatively impact the environment and human health. This study aims to quantify the emissions from a coal-fired power plant, investigate the interplay between different emissions, simulate the dispersion of emissions, and assess their health impact through a health risk assessment. The results indicate that SO2 is the primary contributor to emissions and its impact on human health is a concern. The health effects, both chronic and acute, are more pronounced in children than in adults. This study combines real-time emissions data and simulations to assess emissions’ health impact, raising awareness about the emissions from coal-fired power plants. Furthermore, the findings can potentially enhance working conditions for employees and promote environmental health.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.