{"title":"CUSTOMER-FOCUSED AIRCRAFT SEAT DESIGN: A CASE STUDY WITH AHP-QFD","authors":"Almıla Yilmaz Çetin, C. Ucler","doi":"10.3846/aviation.2023.20210","DOIUrl":null,"url":null,"abstract":"Aviation is rapidly expanding and recovering from the pandemic impact driven by the experience economy. This is particularly subject to interfaces such as the aircraft seats, which are getting intense attention as a differentiator in the cabin. The focal point of this paper is to assess and convert customer requirements into what must be done for an optimum aircraft seat. To achieve this, a 2-step analytic hierarchy process and quality function deployment (AHP-QFD) methodology was successfully applied, consolidating product quality characteristics. Then, it leverages a novel scoring method of interdependencies to isolate dependable design variables. Consequently, safety, weight, and durability scored maximum, emphasizing backrest design and alternative composite materials, while test infrastructure was determined as a critical investment component. Furthermore, it is shown how AHP-QFD can be used for product strategy and strategic portfolio management of R&D projects.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":"30 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2023.20210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Aviation is rapidly expanding and recovering from the pandemic impact driven by the experience economy. This is particularly subject to interfaces such as the aircraft seats, which are getting intense attention as a differentiator in the cabin. The focal point of this paper is to assess and convert customer requirements into what must be done for an optimum aircraft seat. To achieve this, a 2-step analytic hierarchy process and quality function deployment (AHP-QFD) methodology was successfully applied, consolidating product quality characteristics. Then, it leverages a novel scoring method of interdependencies to isolate dependable design variables. Consequently, safety, weight, and durability scored maximum, emphasizing backrest design and alternative composite materials, while test infrastructure was determined as a critical investment component. Furthermore, it is shown how AHP-QFD can be used for product strategy and strategic portfolio management of R&D projects.
期刊介绍:
CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops