Xinxing Wang, Tiejun Lin, D. Lv, Yunlei An, Xingzhen Qi, K. Gong, Liangshu Zhong
{"title":"A CoFe Bimetallic Catalyst for the Direct Conversion of Syngas to Olefins","authors":"Xinxing Wang, Tiejun Lin, D. Lv, Yunlei An, Xingzhen Qi, K. Gong, Liangshu Zhong","doi":"10.3390/catal13121472","DOIUrl":null,"url":null,"abstract":"Syngas conversion is a useful technology for converting nonpetroleum carbon resources into chemicals such as olefins. Iron- and cobalt-based catalysts, as two major categories, have been extensively studied in Fischer–Tropsch synthesis to olefins (FTO) reactions. Although both iron and cobalt catalysts have shown distinct merits and shortcomings, they are also complementary in their properties and catalytic performances when combined with each other. Herein, Na-modified CoFe bimetallic catalysts were fabricated using a co-precipitation method. It was found that there was a synergistic effect between Co and Fe that promoted a CO dissociation rate and carburization, and an appropriate Co/Fe ratio was conducive to improvements in their catalytic performances. The desired olefins selectivity reached 66.1 C% at a CO conversion of 37.5% for a Co2Fe1 catalyst, while the methane selectivity was only 4.3 C%. In addition, no obvious deactivation was found after nearly 160 h, indicating their potential industrial application.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal13121472","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Syngas conversion is a useful technology for converting nonpetroleum carbon resources into chemicals such as olefins. Iron- and cobalt-based catalysts, as two major categories, have been extensively studied in Fischer–Tropsch synthesis to olefins (FTO) reactions. Although both iron and cobalt catalysts have shown distinct merits and shortcomings, they are also complementary in their properties and catalytic performances when combined with each other. Herein, Na-modified CoFe bimetallic catalysts were fabricated using a co-precipitation method. It was found that there was a synergistic effect between Co and Fe that promoted a CO dissociation rate and carburization, and an appropriate Co/Fe ratio was conducive to improvements in their catalytic performances. The desired olefins selectivity reached 66.1 C% at a CO conversion of 37.5% for a Co2Fe1 catalyst, while the methane selectivity was only 4.3 C%. In addition, no obvious deactivation was found after nearly 160 h, indicating their potential industrial application.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.