{"title":"Extracting fracture properties from digital image and volume correlation displacement data: A review","authors":"T. H. Becker","doi":"10.1111/str.12469","DOIUrl":null,"url":null,"abstract":"The advent of digital image and volume correlation has attracted wide use in fracture mechanics. The full‐field nature of digital image and volume correlation allows for the integration of computational fracture mechanics to analyse cracked samples quantitatively. This review provides a comprehensive overview of current methods used to extract fracture properties from full‐field displacement data. The term full‐field fracture mechanics is introduced to highlight the uniqueness of using inherently noisy experiential data to extract fracture properties. The review focuses on post‐processing‐based approaches rather than integrated approaches, as these have less limitations and are more commonly employed. There are four approaches that are discussed in extracting fracture properties from experimentally computed displacement data: field‐fitting, integral, crack‐opening and cohesive zone modelling approaches. This is further developed to discuss problems associated with using digital image and volume correlation to extract properties, including application examples.","PeriodicalId":21972,"journal":{"name":"Strain","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12469","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of digital image and volume correlation has attracted wide use in fracture mechanics. The full‐field nature of digital image and volume correlation allows for the integration of computational fracture mechanics to analyse cracked samples quantitatively. This review provides a comprehensive overview of current methods used to extract fracture properties from full‐field displacement data. The term full‐field fracture mechanics is introduced to highlight the uniqueness of using inherently noisy experiential data to extract fracture properties. The review focuses on post‐processing‐based approaches rather than integrated approaches, as these have less limitations and are more commonly employed. There are four approaches that are discussed in extracting fracture properties from experimentally computed displacement data: field‐fitting, integral, crack‐opening and cohesive zone modelling approaches. This is further developed to discuss problems associated with using digital image and volume correlation to extract properties, including application examples.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.