Bearing Digital Twin Based on Response Model and Reinforcement Learning

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Zhaorong Li, Jiaoying Wang, Diwang Ruan, Jianping Yan, C. Gühmann
{"title":"Bearing Digital Twin Based on Response Model and Reinforcement Learning","authors":"Zhaorong Li, Jiaoying Wang, Diwang Ruan, Jianping Yan, C. Gühmann","doi":"10.3390/lubricants11120502","DOIUrl":null,"url":null,"abstract":"In recent years, research on bearing fault modeling has witnessed significant advancements. However, the modeling of bearing faults using digital twins (DTs) remains an emerging area of exploration. This paper introduces a bearing digital twin developed by integrating a signal-based response model with reinforcement learning techniques. Initially, a signal-based model is constructed, comprising a unit fault impulse function and a decay oscillation function. This model illustrates the bearing’s acceleration response under fault conditions and acts as the environmental component within the bearing digital twin. Subsequently, a parameter estimation process identifies two critical parameters from the signal-based model: the load proportional factor and the decaying constant. The Deep Deterministic Policy Gradient (DDPG) algorithm is employed as the agent for online learning of these parameters. The cosine similarity metric is employed to define the state and reward by comparing the real acceleration measurements with the simulation data generated by the digital twin. To validate the effectiveness of the digital twin, experimental data sourced from the three datasets are utilized. The results underscore the digital twin’s capacity to faithfully replicate the bearing’s acceleration response under diverse conditions, demonstrating a high degree of similarity in both the time and frequency domains.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120502","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, research on bearing fault modeling has witnessed significant advancements. However, the modeling of bearing faults using digital twins (DTs) remains an emerging area of exploration. This paper introduces a bearing digital twin developed by integrating a signal-based response model with reinforcement learning techniques. Initially, a signal-based model is constructed, comprising a unit fault impulse function and a decay oscillation function. This model illustrates the bearing’s acceleration response under fault conditions and acts as the environmental component within the bearing digital twin. Subsequently, a parameter estimation process identifies two critical parameters from the signal-based model: the load proportional factor and the decaying constant. The Deep Deterministic Policy Gradient (DDPG) algorithm is employed as the agent for online learning of these parameters. The cosine similarity metric is employed to define the state and reward by comparing the real acceleration measurements with the simulation data generated by the digital twin. To validate the effectiveness of the digital twin, experimental data sourced from the three datasets are utilized. The results underscore the digital twin’s capacity to faithfully replicate the bearing’s acceleration response under diverse conditions, demonstrating a high degree of similarity in both the time and frequency domains.
基于响应模型和强化学习的轴承数字双胞胎
近年来,轴承故障建模研究取得了重大进展。然而,利用数字孪生(DT)建立轴承故障模型仍是一个新兴的探索领域。本文介绍了通过将基于信号的响应模型与强化学习技术相结合而开发的轴承数字孪生模型。首先,构建了一个基于信号的模型,包括单位故障脉冲函数和衰减振荡函数。该模型展示了轴承在故障条件下的加速度响应,并作为轴承数字孪生中的环境组件。随后,参数估计过程从基于信号的模型中识别出两个关键参数:负载比例系数和衰减常数。深度确定性策略梯度(DDPG)算法被用作这些参数在线学习的代理。通过比较真实加速度测量数据和数字孪生系统生成的模拟数据,采用余弦相似度量来定义状态和奖励。为了验证数字孪生的有效性,我们使用了来自三个数据集的实验数据。结果表明,数字孪生能够在各种条件下忠实地复制轴承的加速度响应,在时域和频域都表现出高度的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信