Systematic Analysis of Rotated Dual-Split Elliptical SRR with Band-Stop Characteristics

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Swarnadipto Ghosh, Dipankar Saha, Ayona Chakraborty, Samik Chakraborty, Bhaskar Gupta
{"title":"Systematic Analysis of Rotated Dual-Split Elliptical SRR with Band-Stop Characteristics","authors":"Swarnadipto Ghosh, Dipankar Saha, Ayona Chakraborty, Samik Chakraborty, Bhaskar Gupta","doi":"10.1155/2023/5527842","DOIUrl":null,"url":null,"abstract":"In this research article, a novel double-split elliptical split ring resonator (DS-ESRR) is proposed to achieve frequency-notching behavior of ultrawideband filtenna, where the semimajor and minor axes of the ellipse are taken as a bivariate random variable and expressed in Ramanujan’s correction coefficient so that more degree of freedom is available for choosing degenerated impedance and thus for variable frequency-notching applications. To verify this hypothetical method, finite sets of variables for DS-ESRR are presented in this proposed work, and a mathematical expression is formulated to estimate the resonant frequency of the DS-ESRR, such that for practical applications, frequency-notching parameters can be easily estimated accurately rather than previously used SRR like circular or square-shaped geometry. DS-ESRR is deployed at the back of a CPW-fed ultrawideband antenna for notching filter application, and the computed data is compared with the eigen mode simulation results which reveal good agreement with each other.","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/5527842","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this research article, a novel double-split elliptical split ring resonator (DS-ESRR) is proposed to achieve frequency-notching behavior of ultrawideband filtenna, where the semimajor and minor axes of the ellipse are taken as a bivariate random variable and expressed in Ramanujan’s correction coefficient so that more degree of freedom is available for choosing degenerated impedance and thus for variable frequency-notching applications. To verify this hypothetical method, finite sets of variables for DS-ESRR are presented in this proposed work, and a mathematical expression is formulated to estimate the resonant frequency of the DS-ESRR, such that for practical applications, frequency-notching parameters can be easily estimated accurately rather than previously used SRR like circular or square-shaped geometry. DS-ESRR is deployed at the back of a CPW-fed ultrawideband antenna for notching filter application, and the computed data is compared with the eigen mode simulation results which reveal good agreement with each other.
具有带挡特性的旋转双分裂椭圆 SRR 系统分析
本研究文章提出了一种新型双分裂椭圆分裂环谐振器(DS-ESRR)来实现超宽带滤波器的频率消隐行为,其中将椭圆的半长轴和小轴作为双变量随机变量,并用拉马努扬修正系数表示,这样就有更大的自由度来选择退化阻抗,从而实现可变频率消隐应用。为了验证这种假设方法,本研究提出了 DS-ESRR 的有限变量集,并通过数学表达式估算了 DS-ESRR 的谐振频率,从而在实际应用中可以轻松准确地估算出频率消隐参数,而不是之前使用的圆形或方形几何形状的 SRR。DS-ESRR 部署在 CPW 馈电超宽带天线的背面,用于陷波滤波器的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信