T. Uma Rajalakshmi, C. Esaivani, T. Anantha Kumar, R. Mariselvam, G. Tamil Selvan, Zhen Zhang, Nouf M. Alyam, P. Mariselvi
{"title":"Green synthesis of iron oxide nanoparticles from Spermacoce ocymoides Burm.f. plant extracts for targeted lung cancer A549 cell therapy","authors":"T. Uma Rajalakshmi, C. Esaivani, T. Anantha Kumar, R. Mariselvam, G. Tamil Selvan, Zhen Zhang, Nouf M. Alyam, P. Mariselvi","doi":"10.4314/bcse.v38i1.10","DOIUrl":null,"url":null,"abstract":"The present study evaluated the synthesis of iron oxide nanoparticles using Spermacoce ocymoides Burm.f. plant extracts, and the effects of plant based iron oxide nanoparticles on A549 lung cancer cells were investigated to elucidate their impact on cellular morphology, mitochondrial function, and apoptotic pathways. Spermacoce ocymoides plant based iron oxide nanoparticles were characterised by X-ray diffraction, Atomic force microscopy, FTIR, and UV-Vis absorption spectroscopy. Iron oxide nanoparticle treatment caused considerable morphological alterations in A549 cells, including cell shrinkage, detachment, membrane blabbing, and distorted shape, consistent with cellular stress and potential apoptotic events. MMP analysis revealed a dose-dependent decrease in mitochondrial membrane potential, implying that nanoparticles have an effect on mitochondrial function. The presence of reactive oxygen species suggested that oxidative stress was involved in the cellular response to iron oxide nanoparticles. Additionally, DNA fragmentation analysis confirmed the activation of apoptotic pathways, with the nanoparticles themselves serving as a positive control for inducing apoptosis. The observed morphological changes, altered mitochondrial function, ROS production, and DNA fragmentation collectively point towards apoptotic cell death pathways being triggered by the nanoparticles. KEY WORDS: Spermacoce ocymoides, Iron oxide nanoparticles, A549 cells, Apoptotic Bull. Chem. Soc. Ethiop. 2024, 38(1), 123-134. DOI: https://dx.doi.org/10.4314/bcse.v38i1.10","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v38i1.10","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study evaluated the synthesis of iron oxide nanoparticles using Spermacoce ocymoides Burm.f. plant extracts, and the effects of plant based iron oxide nanoparticles on A549 lung cancer cells were investigated to elucidate their impact on cellular morphology, mitochondrial function, and apoptotic pathways. Spermacoce ocymoides plant based iron oxide nanoparticles were characterised by X-ray diffraction, Atomic force microscopy, FTIR, and UV-Vis absorption spectroscopy. Iron oxide nanoparticle treatment caused considerable morphological alterations in A549 cells, including cell shrinkage, detachment, membrane blabbing, and distorted shape, consistent with cellular stress and potential apoptotic events. MMP analysis revealed a dose-dependent decrease in mitochondrial membrane potential, implying that nanoparticles have an effect on mitochondrial function. The presence of reactive oxygen species suggested that oxidative stress was involved in the cellular response to iron oxide nanoparticles. Additionally, DNA fragmentation analysis confirmed the activation of apoptotic pathways, with the nanoparticles themselves serving as a positive control for inducing apoptosis. The observed morphological changes, altered mitochondrial function, ROS production, and DNA fragmentation collectively point towards apoptotic cell death pathways being triggered by the nanoparticles. KEY WORDS: Spermacoce ocymoides, Iron oxide nanoparticles, A549 cells, Apoptotic Bull. Chem. Soc. Ethiop. 2024, 38(1), 123-134. DOI: https://dx.doi.org/10.4314/bcse.v38i1.10
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.