Green synthesis of iron oxide nanoparticles from Spermacoce ocymoides Burm.f. plant extracts for targeted lung cancer A549 cell therapy

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
T. Uma Rajalakshmi, C. Esaivani, T. Anantha Kumar, R. Mariselvam, G. Tamil Selvan, Zhen Zhang, Nouf M. Alyam, P. Mariselvi
{"title":"Green synthesis of iron oxide nanoparticles from Spermacoce ocymoides Burm.f. plant extracts for targeted lung cancer A549 cell therapy","authors":"T. Uma Rajalakshmi, C. Esaivani, T. Anantha Kumar, R. Mariselvam, G. Tamil Selvan, Zhen Zhang, Nouf M. Alyam, P. Mariselvi","doi":"10.4314/bcse.v38i1.10","DOIUrl":null,"url":null,"abstract":"The present study evaluated the synthesis of iron oxide nanoparticles using Spermacoce ocymoides Burm.f. plant extracts, and the effects of plant based iron oxide nanoparticles on A549 lung cancer cells were investigated to elucidate their impact on cellular morphology, mitochondrial function, and apoptotic pathways. Spermacoce ocymoides plant based iron oxide nanoparticles were characterised by X-ray diffraction, Atomic force microscopy, FTIR, and UV-Vis absorption spectroscopy. Iron oxide nanoparticle treatment caused considerable morphological alterations in A549 cells, including cell shrinkage, detachment, membrane blabbing, and distorted shape, consistent with cellular stress and potential apoptotic events. MMP analysis revealed a dose-dependent decrease in mitochondrial membrane potential, implying that nanoparticles have an effect on mitochondrial function. The presence of reactive oxygen species suggested that oxidative stress was involved in the cellular response to iron oxide nanoparticles. Additionally, DNA fragmentation analysis confirmed the activation of apoptotic pathways, with the nanoparticles themselves serving as a positive control for inducing apoptosis. The observed morphological changes, altered mitochondrial function, ROS production, and DNA fragmentation collectively point towards apoptotic cell death pathways being triggered by the nanoparticles. KEY WORDS: Spermacoce ocymoides, Iron oxide nanoparticles, A549 cells, Apoptotic Bull. Chem. Soc. Ethiop. 2024, 38(1), 123-134. DOI: https://dx.doi.org/10.4314/bcse.v38i1.10","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v38i1.10","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study evaluated the synthesis of iron oxide nanoparticles using Spermacoce ocymoides Burm.f. plant extracts, and the effects of plant based iron oxide nanoparticles on A549 lung cancer cells were investigated to elucidate their impact on cellular morphology, mitochondrial function, and apoptotic pathways. Spermacoce ocymoides plant based iron oxide nanoparticles were characterised by X-ray diffraction, Atomic force microscopy, FTIR, and UV-Vis absorption spectroscopy. Iron oxide nanoparticle treatment caused considerable morphological alterations in A549 cells, including cell shrinkage, detachment, membrane blabbing, and distorted shape, consistent with cellular stress and potential apoptotic events. MMP analysis revealed a dose-dependent decrease in mitochondrial membrane potential, implying that nanoparticles have an effect on mitochondrial function. The presence of reactive oxygen species suggested that oxidative stress was involved in the cellular response to iron oxide nanoparticles. Additionally, DNA fragmentation analysis confirmed the activation of apoptotic pathways, with the nanoparticles themselves serving as a positive control for inducing apoptosis. The observed morphological changes, altered mitochondrial function, ROS production, and DNA fragmentation collectively point towards apoptotic cell death pathways being triggered by the nanoparticles. KEY WORDS: Spermacoce ocymoides, Iron oxide nanoparticles, A549 cells, Apoptotic Bull. Chem. Soc. Ethiop. 2024, 38(1), 123-134. DOI: https://dx.doi.org/10.4314/bcse.v38i1.10
从 Spermacoce ocymoides Burm.f. 植物提取物中绿色合成氧化铁纳米粒子,用于肺癌 A549 细胞靶向治疗
本研究评估了利用 Spermacoce ocymoides Burm.f. 植物提取物合成氧化铁纳米粒子的情况,并研究了植物基氧化铁纳米粒子对 A549 肺癌细胞的影响,以阐明其对细胞形态、线粒体功能和凋亡途径的影响。通过 X 射线衍射、原子力显微镜、傅里叶变换红外光谱和紫外可见吸收光谱对 Spermacoce ocymoides 植物基氧化铁纳米粒子进行了表征。氧化铁纳米颗粒处理会导致 A549 细胞发生严重的形态学改变,包括细胞萎缩、脱落、膜脱落和形状扭曲,这与细胞应激和潜在的细胞凋亡事件一致。MMP 分析表明线粒体膜电位的降低与剂量有关,这意味着纳米颗粒对线粒体功能有影响。活性氧的存在表明,氧化应激参与了细胞对氧化铁纳米颗粒的反应。此外,DNA 片段分析证实了凋亡途径的激活,纳米粒子本身可作为诱导凋亡的阳性对照。观察到的形态学变化、线粒体功能改变、ROS产生和DNA片段化共同表明,纳米粒子触发了细胞凋亡途径。 关键词:Spermacoce ocymoides 氧化铁纳米颗粒 A549 细胞 凋亡 Bull.Chem.Soc.2024, 38(1), 123-134.DOI: https://dx.doi.org/10.4314/bcse.v38i1.10
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信