Biogenic synthesis of silver nanoparticles using essential oil of aerial part of cyclospermum leptophyllum and their application in colorimetric determination of metallic ions
Yilma Hunde Gonfa, Mesfin Getachew Tadesse, Samuel Abicho Kabeto, Fekade Beshah Tessema, Archana Bachheti, Kundan Kumar Chaubey, Rakesh Kumar Bachheti
{"title":"Biogenic synthesis of silver nanoparticles using essential oil of aerial part of cyclospermum leptophyllum and their application in colorimetric determination of metallic ions","authors":"Yilma Hunde Gonfa, Mesfin Getachew Tadesse, Samuel Abicho Kabeto, Fekade Beshah Tessema, Archana Bachheti, Kundan Kumar Chaubey, Rakesh Kumar Bachheti","doi":"10.4314/bcse.v38i1.16","DOIUrl":null,"url":null,"abstract":"The focus of this research was to synthesize biogenic silver nanoparticles (AgNPs) using the essential oil of the aerial part of Cyclospermum leptophyllum (CLEO) and investigate their colorimetric determination of metallic ions. In the synthesis of CLEO mediated AgNPs (CLEO-AgNPs), the one-factor-at-a-time method was used to optimize the reaction parameters. Ultraviolet-visible (UV-Vis) peak of CLEO-AgNPs was determined at 426 nm. Fourier transform-infrared (FTIR) spectra analysis identified the functional groups participating in the bio-reducing, capping, and stabilizing processes in the CLEO-AgNPs synthesis. Scanning electron microscope (SEM) image demonstrated the predominately spherical shape and the average size of 70.86+1.80 nm of CLEO-AgNPs. Energy dispersive X-ray spectroscopy (EDX) peak profile depicted the presence of Ag elements in CLEO-AgNPs. The X-ray diffraction (XRD) peaks observed at 38.5°, 44°, 65°, and 77° which represent Ag(111), Ag(200), Ag(220), and Ag(311) lattice faces, respectively. The average zeta nanosize, zeta potential, and polydispersity index of CLEO-AgNPs were determined as 69.70 nm, -43.5 mV, and 0.256, respectively. The stability test exhibited the prolonged storage stability of CLEO-AgNPs for over six months at room temperature. CLEO-AgNPs demonstrated the potential colorimetric detection of K+, Mg2+, Al3+, Cr6+, Mn2+, Fe3+, Ni2+, Cu2+, Zn2+, Hg2+, Pb2+, and Cd2+ ions in the real samples. KEY WORDS: Cyclospermum leptophyllum, Essential oil, Biogenic silver nanoparticles, Bio-reductants, Colorimetric detection Bull. Chem. Soc. Ethiop. 2024, 38(1), 213-228. DOI: https://dx.doi.org/10.4314/bcse.v38i1.16","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v38i1.16","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of this research was to synthesize biogenic silver nanoparticles (AgNPs) using the essential oil of the aerial part of Cyclospermum leptophyllum (CLEO) and investigate their colorimetric determination of metallic ions. In the synthesis of CLEO mediated AgNPs (CLEO-AgNPs), the one-factor-at-a-time method was used to optimize the reaction parameters. Ultraviolet-visible (UV-Vis) peak of CLEO-AgNPs was determined at 426 nm. Fourier transform-infrared (FTIR) spectra analysis identified the functional groups participating in the bio-reducing, capping, and stabilizing processes in the CLEO-AgNPs synthesis. Scanning electron microscope (SEM) image demonstrated the predominately spherical shape and the average size of 70.86+1.80 nm of CLEO-AgNPs. Energy dispersive X-ray spectroscopy (EDX) peak profile depicted the presence of Ag elements in CLEO-AgNPs. The X-ray diffraction (XRD) peaks observed at 38.5°, 44°, 65°, and 77° which represent Ag(111), Ag(200), Ag(220), and Ag(311) lattice faces, respectively. The average zeta nanosize, zeta potential, and polydispersity index of CLEO-AgNPs were determined as 69.70 nm, -43.5 mV, and 0.256, respectively. The stability test exhibited the prolonged storage stability of CLEO-AgNPs for over six months at room temperature. CLEO-AgNPs demonstrated the potential colorimetric detection of K+, Mg2+, Al3+, Cr6+, Mn2+, Fe3+, Ni2+, Cu2+, Zn2+, Hg2+, Pb2+, and Cd2+ ions in the real samples. KEY WORDS: Cyclospermum leptophyllum, Essential oil, Biogenic silver nanoparticles, Bio-reductants, Colorimetric detection Bull. Chem. Soc. Ethiop. 2024, 38(1), 213-228. DOI: https://dx.doi.org/10.4314/bcse.v38i1.16
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.