{"title":"Are Friendly Robots Trusted More? An Analysis of Robot Sociability and Trust","authors":"T. Kadylak, M. Bayles, Wendy A. Rogers","doi":"10.3390/robotics12060162","DOIUrl":null,"url":null,"abstract":"Older individuals prefer to maintain their autonomy while maintaining social connection and engagement with their family, peers, and community. Though individuals can encounter barriers to these goals, socially assistive robots (SARs) hold the potential for promoting aging in place and independence. Such domestic robots must be trusted, easy to use, and capable of behaving within the scope of accepted social norms for successful adoption to scale. We investigated perceived associations between robot sociability and trust in domestic robot support for instrumental activities of daily living (IADLs). In our multi-study approach, we collected responses from adults aged 65 years and older using two separate online surveys (Study 1, N = 51; Study 2, N = 43). We assessed the relationship between perceived robot sociability and robot trust. Our results consistently demonstrated a strong positive relationship between perceived robot sociability and robot trust for IADL tasks. These data have design implications for promoting robot trust and acceptance of SARs for use in the home by older adults.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12060162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Older individuals prefer to maintain their autonomy while maintaining social connection and engagement with their family, peers, and community. Though individuals can encounter barriers to these goals, socially assistive robots (SARs) hold the potential for promoting aging in place and independence. Such domestic robots must be trusted, easy to use, and capable of behaving within the scope of accepted social norms for successful adoption to scale. We investigated perceived associations between robot sociability and trust in domestic robot support for instrumental activities of daily living (IADLs). In our multi-study approach, we collected responses from adults aged 65 years and older using two separate online surveys (Study 1, N = 51; Study 2, N = 43). We assessed the relationship between perceived robot sociability and robot trust. Our results consistently demonstrated a strong positive relationship between perceived robot sociability and robot trust for IADL tasks. These data have design implications for promoting robot trust and acceptance of SARs for use in the home by older adults.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM