Parameter identification of the linear discrete-time stochastic systems with unknown exogenous inputs

Q3 Physics and Astronomy
Yulia Tsyganova, Andrey Tsyganov
{"title":"Parameter identification of the linear discrete-time stochastic systems with unknown exogenous inputs","authors":"Yulia Tsyganova, Andrey Tsyganov","doi":"10.35470/2226-4116-2023-12-3-219-229","DOIUrl":null,"url":null,"abstract":"The paper addresses a parameter identification problem for linear discrete-time stochastic systems with unknown exogenous inputs. Such systems are considered when solving practical problems related to the measurements processing in the case when it is impossible to do any assumptions about the evolution of unknown input signal or its statistical characteristics that can change over time. We consider a class of discrete time linear stochastic systems with unknown exogenous inputs, where an additional source of a priori uncertainty of the system model is introduced, namely, the unknown parameter, on the elements of which the system model matrices can depend. This formulation of the parameter identification problem under the conditions of unknown inputs and the presence of random noises describes a high degree of uncertainty of a discrete time linear stochastic system. We propose a novel solution to this problem based on the construction of a new instrumental identification criterion. Minimization of this criterion allows for evaluating the unknown system model parameters simultaneously with the estimating of the state vector and unknown exogenous inputs of the system. Numerical experiments confirm the validity and efficiency of the proposed parameter identification method.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2023-12-3-219-229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The paper addresses a parameter identification problem for linear discrete-time stochastic systems with unknown exogenous inputs. Such systems are considered when solving practical problems related to the measurements processing in the case when it is impossible to do any assumptions about the evolution of unknown input signal or its statistical characteristics that can change over time. We consider a class of discrete time linear stochastic systems with unknown exogenous inputs, where an additional source of a priori uncertainty of the system model is introduced, namely, the unknown parameter, on the elements of which the system model matrices can depend. This formulation of the parameter identification problem under the conditions of unknown inputs and the presence of random noises describes a high degree of uncertainty of a discrete time linear stochastic system. We propose a novel solution to this problem based on the construction of a new instrumental identification criterion. Minimization of this criterion allows for evaluating the unknown system model parameters simultaneously with the estimating of the state vector and unknown exogenous inputs of the system. Numerical experiments confirm the validity and efficiency of the proposed parameter identification method.
具有未知外生输入的线性离散时间随机系统的参数识别
本文探讨了具有未知外生输入的线性离散时间随机系统的参数识别问题。在解决与测量处理相关的实际问题时,如果无法对未知输入信号的演变或其随时间变化的统计特征做出任何假设,就会考虑这类系统。我们考虑的是一类具有未知外生输入的离散时间线性随机系统,其中引入了系统模型先验不确定性的额外来源,即未知参数,系统模型矩阵可能取决于该参数的元素。在未知输入和随机噪声存在的条件下,参数识别问题的这种表述方式描述了离散时间线性随机系统的高度不确定性。我们在构建新的工具识别准则的基础上,提出了解决这一问题的新方案。通过最小化该准则,可以在估算系统状态向量和未知外生输入的同时,评估未知的系统模型参数。数值实验证实了所提出的参数识别方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信