{"title":"Macrophage-Targeting and Hydrogen-Peroxide-Responsive Fluorescent Probe for Imaging of Inflammation In Vivo","authors":"Menglin Tao, Minghui Wang, CuiCui Jiang, Wenbin Liu, Wujuan Zhu, Xiang Shi* and Zijuan Hai*, ","doi":"10.1021/cbmi.3c00113","DOIUrl":null,"url":null,"abstract":"<p >An uncontrolled immune response leads to many diseases; therefore, monitoring inflammation is crucial for the diagnosis of subsequent diseases, drug screening, and targeted therapy. Since the inflammatory response mainly occurs in macrophages, there is a need to develop more inflammatory probes with macrophage-targeting ability. Herein, we designed a macrophage-targeted and hydrogen-peroxide-activated fluorescent probe <b>BOH-HCy-Man</b> for real-time imaging of inflammation in vivo and a control probe <b>BOH-HCy</b> without the macrophage-targeting part. The larger rate constant toward H<sub>2</sub>O<sub>2</sub> led to the higher sensitivity of <b>BOH-HCy-Man</b> (19.1-fold) than <b>BOH-HCy</b> (10.2-fold) in vitro. With the help of its macrophage-targeting ability, <b>BOH-HCy-Man</b> possessed an additional 1.6-fold fluorescent enhancement in inflamed RAW 264.7 cells or 1.3-fold fluorescent enhancement in vivo than <b>BOH-HCy</b>. We expected that <b>BOH-HCy-Man</b> will be a powerful tool for early diagnosis of inflammation related diseases.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 4","pages":"270–274"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00113","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An uncontrolled immune response leads to many diseases; therefore, monitoring inflammation is crucial for the diagnosis of subsequent diseases, drug screening, and targeted therapy. Since the inflammatory response mainly occurs in macrophages, there is a need to develop more inflammatory probes with macrophage-targeting ability. Herein, we designed a macrophage-targeted and hydrogen-peroxide-activated fluorescent probe BOH-HCy-Man for real-time imaging of inflammation in vivo and a control probe BOH-HCy without the macrophage-targeting part. The larger rate constant toward H2O2 led to the higher sensitivity of BOH-HCy-Man (19.1-fold) than BOH-HCy (10.2-fold) in vitro. With the help of its macrophage-targeting ability, BOH-HCy-Man possessed an additional 1.6-fold fluorescent enhancement in inflamed RAW 264.7 cells or 1.3-fold fluorescent enhancement in vivo than BOH-HCy. We expected that BOH-HCy-Man will be a powerful tool for early diagnosis of inflammation related diseases.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging