Study on the Lubricating Characteristics of Graphene Lubricants

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Yi Dong, Biao Ma, Cenbo Xiong, Yong Liu, Qin Zhao
{"title":"Study on the Lubricating Characteristics of Graphene Lubricants","authors":"Yi Dong, Biao Ma, Cenbo Xiong, Yong Liu, Qin Zhao","doi":"10.3390/lubricants11120506","DOIUrl":null,"url":null,"abstract":"Graphene is considered a good lubricant additive. The lubricating properties of graphene lubricant at different concentrations and temperatures are studied via a four-ball friction and wear-testing machine. The results show that the coefficient of friction (COF) and wear scar diameter (WSD) of the steel ball with 0.035 wt% graphene lubricant decreased by 40.8% and 50.4%, respectively. Finally, through surface analysis, the following lubrication mechanism is proposed: as the added graphene particles can easily fill and cover the pores of the friction surface, the contact pressure of the rough peak is reduced, resulting in a lower COF and smoother surface. Although the COF increases with temperature, graphene lubricants still exhibit good lubrication effects.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"24 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120506","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene is considered a good lubricant additive. The lubricating properties of graphene lubricant at different concentrations and temperatures are studied via a four-ball friction and wear-testing machine. The results show that the coefficient of friction (COF) and wear scar diameter (WSD) of the steel ball with 0.035 wt% graphene lubricant decreased by 40.8% and 50.4%, respectively. Finally, through surface analysis, the following lubrication mechanism is proposed: as the added graphene particles can easily fill and cover the pores of the friction surface, the contact pressure of the rough peak is reduced, resulting in a lower COF and smoother surface. Although the COF increases with temperature, graphene lubricants still exhibit good lubrication effects.
石墨烯润滑剂的润滑特性研究
石墨烯被认为是一种良好的润滑油添加剂。通过四球摩擦磨损试验机研究了不同浓度和温度下石墨烯润滑剂的润滑性能。结果表明,添加了 0.035 wt% 石墨烯润滑剂的钢球的摩擦系数(COF)和磨损痕直径(WSD)分别降低了 40.8% 和 50.4%。最后,通过表面分析,提出了以下润滑机理:由于添加的石墨烯颗粒很容易填充和覆盖摩擦表面的孔隙,粗糙峰的接触压力减小,导致 COF 降低,表面更光滑。虽然 COF 随温度升高而增大,但石墨烯润滑剂仍表现出良好的润滑效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信