A Novel Approach towards Assessing the Impact of Air Quality and Major Public Health Emergencies on Light Industry: A Multiscale Investigation towards Improving the Risk Prevention System
IF 4.3 2区 环境科学与生态学Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"A Novel Approach towards Assessing the Impact of Air Quality and Major Public Health Emergencies on Light Industry: A Multiscale Investigation towards Improving the Risk Prevention System","authors":"Fang Su, Nini Song, H. Shang, S. Fahad","doi":"10.1155/2023/6031225","DOIUrl":null,"url":null,"abstract":"Measuring the systemic impact of major public health emergencies on the light industry and preventing various uncertain future external risks have become the key challenges to ensuring the stability of the light industry. This paper takes the occurrence of major public health emergencies as the background and focuses on environmental issues such as air pollution and indoor air quality degradation during emergencies. And to explore the multiscale impact of major public health emergencies on the light industry, typical light industry subsectors, and light industry enterprises. The findings of our study reveal that major public health emergencies have a negative impact on the light industry, particularly in the form of a short-term decline in exports, which tends to converge in the long run. Further, it is also revealed that there is heterogeneity in the impact on environmentally sensitive industries, labor-intensive industries, and others. At the microfirm level, major public health emergencies have shown a negative effect, especially the recent pandemic, which has a longer duration and a wider reach. Through multiscale research, this paper provides policy suggestions to improve the macrogovernance mechanism and risk prevention system for the light industry.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1155/2023/6031225","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring the systemic impact of major public health emergencies on the light industry and preventing various uncertain future external risks have become the key challenges to ensuring the stability of the light industry. This paper takes the occurrence of major public health emergencies as the background and focuses on environmental issues such as air pollution and indoor air quality degradation during emergencies. And to explore the multiscale impact of major public health emergencies on the light industry, typical light industry subsectors, and light industry enterprises. The findings of our study reveal that major public health emergencies have a negative impact on the light industry, particularly in the form of a short-term decline in exports, which tends to converge in the long run. Further, it is also revealed that there is heterogeneity in the impact on environmentally sensitive industries, labor-intensive industries, and others. At the microfirm level, major public health emergencies have shown a negative effect, especially the recent pandemic, which has a longer duration and a wider reach. Through multiscale research, this paper provides policy suggestions to improve the macrogovernance mechanism and risk prevention system for the light industry.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.