Chang Liu , Jingze Shao , Jinghui Wang , Yaowen Wang , Yan Wang , Zhipeng Fan , Liping Li , Guangshe Li
{"title":"Construction of dynamic p-n junctions at atomic-scale for unanticipated photocatalytic oxidation activity","authors":"Chang Liu , Jingze Shao , Jinghui Wang , Yaowen Wang , Yan Wang , Zhipeng Fan , Liping Li , Guangshe Li","doi":"10.1016/j.apcatb.2023.123673","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic p-n junction can drive a drift of electrons from p-type to n-type side, and that of holes in the opposite direction simultaneously, which offers a promising avenue for next generation of advanced photocatalysts. However, construction of dynamic p-n junctions still remains challenging. Herein, dynamic p-n junctions at atomic-scale are constructed by hybridizing two n-type semiconductors, Zn-doped TiO<sub>2</sub> and P-doped C<sub>3</sub>N<sub>4</sub>. The catalyst (Z<sub>0.01</sub>T/CNP-4) gives a stable and remarkable photo-oxidation ability for tetracycline hydrochloride (TCH), giving a much higher space-time yield than previously reported. h<sup>+</sup>, <sup>•</sup>O<sub>2</sub><sup>−</sup>, and <sup>•</sup>OH radicals are main active species for the TCH photo-oxidation. Most importantly, <sup>•</sup>O<sub>2</sub><sup>−</sup> species react with photo-generated electrons rapidly separated via atomic-level p-n junctions to yield H<sub>2</sub>O<sub>2</sub> that further promotes the TCH photo-oxidation process. These findings provide new hints in fabricating more novel dynamic p-n junctions for effectively utilizing both photo-generated electrons and holes in the meanwhile to achieve the full potential of photocatalytic reactions.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123673"},"PeriodicalIF":20.2000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323013164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic p-n junction can drive a drift of electrons from p-type to n-type side, and that of holes in the opposite direction simultaneously, which offers a promising avenue for next generation of advanced photocatalysts. However, construction of dynamic p-n junctions still remains challenging. Herein, dynamic p-n junctions at atomic-scale are constructed by hybridizing two n-type semiconductors, Zn-doped TiO2 and P-doped C3N4. The catalyst (Z0.01T/CNP-4) gives a stable and remarkable photo-oxidation ability for tetracycline hydrochloride (TCH), giving a much higher space-time yield than previously reported. h+, •O2−, and •OH radicals are main active species for the TCH photo-oxidation. Most importantly, •O2− species react with photo-generated electrons rapidly separated via atomic-level p-n junctions to yield H2O2 that further promotes the TCH photo-oxidation process. These findings provide new hints in fabricating more novel dynamic p-n junctions for effectively utilizing both photo-generated electrons and holes in the meanwhile to achieve the full potential of photocatalytic reactions.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.