Yongjin Guo , Chao Gao , Yang Jin , Yintao Li , Jianyao Wang , Qing Li , Hongdong Wang
{"title":"A transfer learning-based method for marine machinery diagnosis with small samples in noisy environments","authors":"Yongjin Guo , Chao Gao , Yang Jin , Yintao Li , Jianyao Wang , Qing Li , Hongdong Wang","doi":"10.1016/j.joes.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>The operating conditions of marine machinery are demanding, and their operational state significantly affects the safety of marine structures. Detecting faults is crucial for machinery health management and necessitates a highly precise diagnostic method. In this paper, we propose a fault diagnosis framework that employs transfer learning and dynamics simulation. A denoising convolutional autoencoder is used to reduce noise when monitoring vibration data in marine environments. To address the challenge of limited sample sizes in marine machinery fault data, a multibody dynamics simulation model is developed to acquire data under fault conditions. The fault features are extracted using a convolutional neural network model. Parameter transfer is applied to enhance the accuracy of fault diagnosis. The effectiveness and applicability of the framework are demonstrated through a case study of a bearing fault dataset.</div></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"10 4","pages":"Pages 593-601"},"PeriodicalIF":11.8000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246801332300089X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
The operating conditions of marine machinery are demanding, and their operational state significantly affects the safety of marine structures. Detecting faults is crucial for machinery health management and necessitates a highly precise diagnostic method. In this paper, we propose a fault diagnosis framework that employs transfer learning and dynamics simulation. A denoising convolutional autoencoder is used to reduce noise when monitoring vibration data in marine environments. To address the challenge of limited sample sizes in marine machinery fault data, a multibody dynamics simulation model is developed to acquire data under fault conditions. The fault features are extracted using a convolutional neural network model. Parameter transfer is applied to enhance the accuracy of fault diagnosis. The effectiveness and applicability of the framework are demonstrated through a case study of a bearing fault dataset.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.