Chaos inspired invasive weed optimization algorithm for parameter estimation of solar PV models

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Urvashi Chauhan , Himanshu Chhabra , Prince Jain , Ark Dev , Neetika Chauhan , Bhavnesh Kumar
{"title":"Chaos inspired invasive weed optimization algorithm for parameter estimation of solar PV models","authors":"Urvashi Chauhan ,&nbsp;Himanshu Chhabra ,&nbsp;Prince Jain ,&nbsp;Ark Dev ,&nbsp;Neetika Chauhan ,&nbsp;Bhavnesh Kumar","doi":"10.1016/j.ifacsc.2023.100239","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>High performance solar photovoltaic models require precise knowledge of solar PV cell parameters. Numerous methods based on both deterministic and meta-heuristics have been developed for identifying solar cell parameters. However, the presented methods in the literature have a heavy computational load and limited ability to extract crucial parameters due to </span>nonlinear dynamics<span><span> of solar PV systems. In addition, because they rely on </span>approximations<span> to determine the objective function, the preceding state-of-the-art parameter estimation techniques do not provide accurate results. Thus, a novel chaos-inspired invasive weed optimization (CIIWO) has been developed for accurate solar PV system parameter estimation. Adding a chaotic map to IWO improves the performance of suggested method by expanding the search space globally. Moreover, to cope with the inadequacy in state-of-art objective functions, Newton Raphson approach has been combined with proposed </span></span></span>CIIWO algorithm<span><span>. The suggested approach for solar cell parametric identification has been tested on one-diode, two-diode, and three-diode models. By contrasting the outcomes with nine contemporary </span>optimization strategies for parameter estimation, the superiority of the suggested algorithm has been demonstrated. Commercial PV cell RTC France has been used for the experimental validation. Comprehensive study of experimental data validates the efficacy and stability of the suggested algorithm.</span></p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"27 ","pages":"Article 100239"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601823000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

High performance solar photovoltaic models require precise knowledge of solar PV cell parameters. Numerous methods based on both deterministic and meta-heuristics have been developed for identifying solar cell parameters. However, the presented methods in the literature have a heavy computational load and limited ability to extract crucial parameters due to nonlinear dynamics of solar PV systems. In addition, because they rely on approximations to determine the objective function, the preceding state-of-the-art parameter estimation techniques do not provide accurate results. Thus, a novel chaos-inspired invasive weed optimization (CIIWO) has been developed for accurate solar PV system parameter estimation. Adding a chaotic map to IWO improves the performance of suggested method by expanding the search space globally. Moreover, to cope with the inadequacy in state-of-art objective functions, Newton Raphson approach has been combined with proposed CIIWO algorithm. The suggested approach for solar cell parametric identification has been tested on one-diode, two-diode, and three-diode models. By contrasting the outcomes with nine contemporary optimization strategies for parameter estimation, the superiority of the suggested algorithm has been demonstrated. Commercial PV cell RTC France has been used for the experimental validation. Comprehensive study of experimental data validates the efficacy and stability of the suggested algorithm.

用于太阳能光伏模型参数估计的混沌启发入侵杂草优化算法
高性能太阳能光伏模型需要精确的太阳能光伏电池参数知识。目前已开发出大量基于确定性和元启发式的方法来确定太阳能电池参数。然而,由于太阳能光伏系统的非线性动态特性,文献中介绍的方法计算量大,提取关键参数的能力有限。此外,由于这些方法依赖近似值来确定目标函数,因此之前最先进的参数估计技术无法提供准确的结果。因此,我们开发了一种新颖的混沌启发入侵杂草优化(CIIWO),用于精确估算太阳能光伏系统参数。在 IWO 中加入混沌图,可以在全局范围内扩展搜索空间,从而提高建议方法的性能。此外,为了解决现有目标函数的不足,牛顿-拉斐森方法与所提出的 CIIWO 算法相结合。建议的太阳能电池参数识别方法已在单二极管、双二极管和三二极管模型上进行了测试。通过与九种当代参数估计优化策略的结果对比,证明了所建议算法的优越性。法国的商用光伏电池 RTC 已用于实验验证。对实验数据的综合研究验证了建议算法的有效性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信