Daiwei Lu, Yifan Wu, Ayberk Acar, Xing Yao, Jie Ying Wu, Nicholas Kavoussi, Ipek Oguz
{"title":"ASSIST-U: A system for segmentation and image style transfer for ureteroscopy","authors":"Daiwei Lu, Yifan Wu, Ayberk Acar, Xing Yao, Jie Ying Wu, Nicholas Kavoussi, Ipek Oguz","doi":"10.1049/htl2.12065","DOIUrl":null,"url":null,"abstract":"<p>Kidney stones require surgical removal when they grow too large to be broken up externally or to pass on their own. Upper tract urothelial carcinoma is also sometimes treated endoscopically in a similar procedure. These surgeries are difficult, particularly for trainees who often miss tumours, stones or stone fragments, requiring re-operation. Furthermore, there are no patient-specific simulators to facilitate training or standardized visualization tools for ureteroscopy despite its high prevalence. Here a system ASSIST-U is proposed to create realistic ureteroscopy images and videos solely using preoperative computerized tomography (CT) images to address these unmet needs. A 3D UNet model is trained to automatically segment CT images and construct 3D surfaces. These surfaces are then skeletonized for rendering. Finally, a style transfer model is trained using contrastive unpaired translation (CUT) to synthesize realistic ureteroscopy images. Cross validation on the CT segmentation model achieved a Dice score of 0.853 <span></span><math>\n <semantics>\n <mo>±</mo>\n <annotation>$\\pm$</annotation>\n </semantics></math> 0.084. CUT style transfer produced visually plausible images; the kernel inception distance to real ureteroscopy images was reduced from 0.198 (rendered) to 0.089 (synthesized). The entire pipeline from CT to synthesized ureteroscopy is also qualitatively demonstrated. The proposed ASSIST-U system shows promise for aiding surgeons in the visualization of kidney ureteroscopy.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 2-3","pages":"40-47"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kidney stones require surgical removal when they grow too large to be broken up externally or to pass on their own. Upper tract urothelial carcinoma is also sometimes treated endoscopically in a similar procedure. These surgeries are difficult, particularly for trainees who often miss tumours, stones or stone fragments, requiring re-operation. Furthermore, there are no patient-specific simulators to facilitate training or standardized visualization tools for ureteroscopy despite its high prevalence. Here a system ASSIST-U is proposed to create realistic ureteroscopy images and videos solely using preoperative computerized tomography (CT) images to address these unmet needs. A 3D UNet model is trained to automatically segment CT images and construct 3D surfaces. These surfaces are then skeletonized for rendering. Finally, a style transfer model is trained using contrastive unpaired translation (CUT) to synthesize realistic ureteroscopy images. Cross validation on the CT segmentation model achieved a Dice score of 0.853 0.084. CUT style transfer produced visually plausible images; the kernel inception distance to real ureteroscopy images was reduced from 0.198 (rendered) to 0.089 (synthesized). The entire pipeline from CT to synthesized ureteroscopy is also qualitatively demonstrated. The proposed ASSIST-U system shows promise for aiding surgeons in the visualization of kidney ureteroscopy.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.