Reconstruction and Intelligent Evaluation of Three-Dimensional Texture of Stone Matrix Asphalt-13 Pavement for Skid Resistance

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Gang Dai, Zhiwei Luo, Mingkai Chen, You Zhan, Changfa Ai
{"title":"Reconstruction and Intelligent Evaluation of Three-Dimensional Texture of Stone Matrix Asphalt-13 Pavement for Skid Resistance","authors":"Gang Dai, Zhiwei Luo, Mingkai Chen, You Zhan, Changfa Ai","doi":"10.3390/lubricants11120535","DOIUrl":null,"url":null,"abstract":"To examine the three-dimensional texture structure of SMA-13 asphalt pavement and assess its anti-skid performance, a light gradient-boosting machine evaluation model was developed using non-contact three-dimensional laser-scanning technology. The study focused on collecting three-dimensional texture data from newly laid SMA-13 asphalt pavement. Subsequently, wavelet transform was employed to reconstruct the pavement’s three-dimensional texture, and discrete Fourier transform was utilized to separate macro- and microtextures, enabling the calculation of their characteristics. The macro- and micro-characteristics of the three-dimensional texture and friction coefficient were input into the model. A comparative analysis with linear regression and a random forest model revealed superior accuracy and efficiency in the model. The training set R2 is 0.948, and the testing set R2 is 0.842, effectively enabling the evaluation of pavement anti-skid performance. An analysis of parameter importance indicated that Rku and MPD are still effective indicators for evaluating skid resistance. Furthermore, diverse texture indexes exhibited varying effects on the anti-skid performance. The established asphalt pavement anti-skid evaluation model serves as a theoretical foundation for understanding the actual influence on pavement anti-skid performance.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"25 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120535","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To examine the three-dimensional texture structure of SMA-13 asphalt pavement and assess its anti-skid performance, a light gradient-boosting machine evaluation model was developed using non-contact three-dimensional laser-scanning technology. The study focused on collecting three-dimensional texture data from newly laid SMA-13 asphalt pavement. Subsequently, wavelet transform was employed to reconstruct the pavement’s three-dimensional texture, and discrete Fourier transform was utilized to separate macro- and microtextures, enabling the calculation of their characteristics. The macro- and micro-characteristics of the three-dimensional texture and friction coefficient were input into the model. A comparative analysis with linear regression and a random forest model revealed superior accuracy and efficiency in the model. The training set R2 is 0.948, and the testing set R2 is 0.842, effectively enabling the evaluation of pavement anti-skid performance. An analysis of parameter importance indicated that Rku and MPD are still effective indicators for evaluating skid resistance. Furthermore, diverse texture indexes exhibited varying effects on the anti-skid performance. The established asphalt pavement anti-skid evaluation model serves as a theoretical foundation for understanding the actual influence on pavement anti-skid performance.
石子基质沥青-13 路面抗滑性三维纹理重构与智能评估
为检测 SMA-13 沥青路面的三维纹理结构并评估其防滑性能,利用非接触式三维激光扫描技术开发了光梯度增强机评估模型。研究重点是收集新铺设的 SMA-13 沥青路面的三维纹理数据。随后,利用小波变换重建路面的三维纹理,并利用离散傅里叶变换分离宏观纹理和微观纹理,从而计算出它们的特征。将三维纹理的宏观和微观特征以及摩擦系数输入模型。与线性回归和随机森林模型的对比分析表明,该模型具有更高的准确性和效率。训练集 R2 为 0.948,测试集 R2 为 0.842,可有效评估路面防滑性能。参数重要性分析表明,Rku 和 MPD 仍是评价路面防滑性能的有效指标。此外,不同的纹理指标对抗滑性能的影响也不尽相同。所建立的沥青路面防滑评价模型为了解路面防滑性能的实际影响奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信