Dataset Creation for Semantic Segmentation Using Colored Point Clouds Considering Shadows on Traversable Area

IF 0.9 Q4 ROBOTICS
Marin Wada, Yuriko Ueda, Junya Morioka, Miho Adachi, Ryusuke Miyamoto
{"title":"Dataset Creation for Semantic Segmentation Using Colored Point Clouds Considering Shadows on Traversable Area","authors":"Marin Wada, Yuriko Ueda, Junya Morioka, Miho Adachi, Ryusuke Miyamoto","doi":"10.20965/jrm.2023.p1406","DOIUrl":null,"url":null,"abstract":"Semantic segmentation, which provides pixel-wise class labels for an input image, is expected to improve the movement performance of autonomous robots significantly. However, it is difficult to train a good classifier for target applications; public large-scale datasets are often unsuitable. Actually, a classifier trained using Cityscapes is not enough accurate for the Tsukuba Challenge. To generate an appropriate dataset for the target environment, we attempt to construct a semi-automatic method using a colored point cloud obtained with a 3D scanner. Although some degree of accuracy is achieved, it is not practical. Hence, we propose a novel method that creates images with shadows by rendering them in the 3D space to improve the classification accuracy of actual images with shadows, for which existing methods do not output appropriate results. Experimental results using datasets captured around the Tsukuba City Hall demonstrate that the proposed method was superior when appropriate constraints were applied for shadow generation; the mIoU was improved from 0.358 to 0.491 when testing images were obtained at different locations.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"12 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic segmentation, which provides pixel-wise class labels for an input image, is expected to improve the movement performance of autonomous robots significantly. However, it is difficult to train a good classifier for target applications; public large-scale datasets are often unsuitable. Actually, a classifier trained using Cityscapes is not enough accurate for the Tsukuba Challenge. To generate an appropriate dataset for the target environment, we attempt to construct a semi-automatic method using a colored point cloud obtained with a 3D scanner. Although some degree of accuracy is achieved, it is not practical. Hence, we propose a novel method that creates images with shadows by rendering them in the 3D space to improve the classification accuracy of actual images with shadows, for which existing methods do not output appropriate results. Experimental results using datasets captured around the Tsukuba City Hall demonstrate that the proposed method was superior when appropriate constraints were applied for shadow generation; the mIoU was improved from 0.358 to 0.491 when testing images were obtained at different locations.
利用考虑到可穿越区域阴影的彩色点云创建语义分割数据集
语义分割可为输入图像提供像素级标签,有望显著提高自主机器人的运动性能。然而,要为目标应用训练出一个好的分类器并不容易;公开的大规模数据集通常并不适合。事实上,在筑波挑战赛中,使用城市景观训练的分类器不够准确。为了生成适合目标环境的数据集,我们尝试使用三维扫描仪获得的彩色点云构建一种半自动方法。虽然达到了一定的精确度,但并不实用。因此,我们提出了一种新方法,通过在三维空间中渲染阴影来创建有阴影的图像,以提高有阴影的实际图像的分类准确性,而现有的方法并不能输出适当的结果。使用在筑波市政厅周围捕获的数据集进行的实验结果表明,在阴影生成过程中应用适当的限制条件时,所提出的方法更胜一筹;在不同地点获取测试图像时,mIoU 从 0.358 提高到 0.491。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
36.40%
发文量
134
期刊介绍: First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信