Impact of Spatial Rainfall Scenarios on River Basin Runoff Simulation a Nan River Basin Study Using the Rainfall-Runoff-Inundation Model

Eng Pub Date : 2023-12-21 DOI:10.3390/eng5010004
K. Pakoksung
{"title":"Impact of Spatial Rainfall Scenarios on River Basin Runoff Simulation a Nan River Basin Study Using the Rainfall-Runoff-Inundation Model","authors":"K. Pakoksung","doi":"10.3390/eng5010004","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the impact of spatial rainfall distribution scenarios from ground observation stations on runoff simulation using hydrological modeling specific to the Rainfall-Runoff-Inundation (RRI) model. The RRI model was applied with six different spatial distribution scenarios of input rainfall, including Inverse Distance Weight (IDW), Thiessen polygon (TSP), Surface Polynomial (SPL), Simple kriging (SKG), and Ordinary kriging (OKG), to simulate the runoff of a 13,000 km2 watershed, namely the Nan River Basin in Thailand. This study utilized data from the 2014 storm event, incorporating temporal information from 28 rainfall stations to estimate rainfall in the spatial distribution scenarios. The six statistics, Volume Bias, Peak Bias, Root Mean Square Error, Correlation, and Mean Bias, were used to determine the accuracy of the estimated rainfall and runoff. Overall, the Simple kriging (SKG) method outperformed the other scenarios based on the statistical values to validate with measured rainfall data. Similarly, SKG demonstrated the closest match between simulated and observed runoff, achieving the highest correlation (0.803), the lowest Root Mean Square Error (164.48 cms), and high Nash-Sutcliffe Efficiency coefficient (0.499) values. This research underscores the practical significance of spatial interpolation methods, such as SKG, in combination with digital elevation models (DEMs) and landuse/soil type datasets, in delivering reliable runoff simulations considering the RRI model on the river basin scale.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eng","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng5010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the impact of spatial rainfall distribution scenarios from ground observation stations on runoff simulation using hydrological modeling specific to the Rainfall-Runoff-Inundation (RRI) model. The RRI model was applied with six different spatial distribution scenarios of input rainfall, including Inverse Distance Weight (IDW), Thiessen polygon (TSP), Surface Polynomial (SPL), Simple kriging (SKG), and Ordinary kriging (OKG), to simulate the runoff of a 13,000 km2 watershed, namely the Nan River Basin in Thailand. This study utilized data from the 2014 storm event, incorporating temporal information from 28 rainfall stations to estimate rainfall in the spatial distribution scenarios. The six statistics, Volume Bias, Peak Bias, Root Mean Square Error, Correlation, and Mean Bias, were used to determine the accuracy of the estimated rainfall and runoff. Overall, the Simple kriging (SKG) method outperformed the other scenarios based on the statistical values to validate with measured rainfall data. Similarly, SKG demonstrated the closest match between simulated and observed runoff, achieving the highest correlation (0.803), the lowest Root Mean Square Error (164.48 cms), and high Nash-Sutcliffe Efficiency coefficient (0.499) values. This research underscores the practical significance of spatial interpolation methods, such as SKG, in combination with digital elevation models (DEMs) and landuse/soil type datasets, in delivering reliable runoff simulations considering the RRI model on the river basin scale.
空间降雨情景对流域径流模拟的影响 利用降雨-径流-淹没模型进行的南河流域研究
本研究旨在利用降雨-径流-淹没(RRI)模型的特定水文模型,研究地面观测站的空间降雨分布情况对径流模拟的影响。RRI 模型采用了六种不同的输入降雨空间分布方案,包括反距离加权法(IDW)、Thiessen 多边形法(TSP)、表面多项式法(SPL)、简单克里金法(SKG)和普通克里金法(OKG),以模拟 13,000 平方公里流域(即泰国南河流域)的径流。本研究利用 2014 年暴雨事件的数据,结合 28 个雨量站的时间信息,估算空间分布情景中的降雨量。研究使用了六种统计量,即量偏差、峰值偏差、均方根误差、相关性和均值偏差,来确定估算降雨量和径流量的准确性。总体而言,根据与实测降雨量数据验证的统计值,简单克里金法(SKG)优于其他方案。同样,简单克里金法在模拟径流和观测径流之间表现出了最接近的匹配,达到了最高的相关性(0.803)、最低的均方根误差(164.48 厘米)和较高的纳什-苏特克里夫效率系数(0.499)。这项研究强调了空间插值方法(如 SKG)与数字高程模型(DEM)和土地利用/土壤类型数据集相结合,在流域尺度上提供可靠的 RRI 模型径流模拟的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eng
Eng
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信