Plant-Derived Zein as an Alternative to Animal-Derived Gelatin for Use as a Tissue Engineering Scaffold

IF 4 Q2 ENGINEERING, BIOMEDICAL
Apurva Limaye, Venkatesan Perumal, Courtney M. Karner, Treena Livingston Arinzeh
{"title":"Plant-Derived Zein as an Alternative to Animal-Derived Gelatin for Use as a Tissue Engineering Scaffold","authors":"Apurva Limaye,&nbsp;Venkatesan Perumal,&nbsp;Courtney M. Karner,&nbsp;Treena Livingston Arinzeh","doi":"10.1002/anbr.202300104","DOIUrl":null,"url":null,"abstract":"<p>Natural biomaterials are commonly used as tissue engineering scaffolds due to their biocompatibility and biodegradability. Plant-derived materials have also gained significant interest due to their abundance and as a sustainable resource. This study evaluates the corn-derived protein zein as a plant-derived substitute for animal-derived gelatin, which is widely used for its favorable cell adhesion properties. Limited studies exist evaluating pure zein for tissue engineering. Herein, fibrous zein scaffolds are evaluated in vitro for cell adhesion, growth, and infiltration into the scaffold in comparison to gelatin scaffolds and are further studied in a subcutaneous model in vivo. Human mesenchymal stem cells (MSCs) on zein scaffolds express focal adhesion kinase and integrins such as <i>α</i>\n <sub>v</sub>\n <i>β</i>\n <sub>3</sub>, <i>α</i>\n <sub>4</sub>, and <i>β</i>\n <sub>1</sub> similar to gelatin scaffolds. MSCs also infiltrate zein scaffolds with a greater penetration depth than cells on gelatin scaffolds. Cells loaded onto zein scaffolds in vivo show higher cell proliferation and CD31 expression, as an indicator of blood vessel formation. Findings also demonstrate the capability of zein scaffolds to maintain the multipotent capability of MSCs. Overall, findings demonstrate plant-derived zein may be a suitable alternative to the animal-derived gelatin and demonstrates zein's potential as a scaffold for tissue engineering.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natural biomaterials are commonly used as tissue engineering scaffolds due to their biocompatibility and biodegradability. Plant-derived materials have also gained significant interest due to their abundance and as a sustainable resource. This study evaluates the corn-derived protein zein as a plant-derived substitute for animal-derived gelatin, which is widely used for its favorable cell adhesion properties. Limited studies exist evaluating pure zein for tissue engineering. Herein, fibrous zein scaffolds are evaluated in vitro for cell adhesion, growth, and infiltration into the scaffold in comparison to gelatin scaffolds and are further studied in a subcutaneous model in vivo. Human mesenchymal stem cells (MSCs) on zein scaffolds express focal adhesion kinase and integrins such as α v β 3, α 4, and β 1 similar to gelatin scaffolds. MSCs also infiltrate zein scaffolds with a greater penetration depth than cells on gelatin scaffolds. Cells loaded onto zein scaffolds in vivo show higher cell proliferation and CD31 expression, as an indicator of blood vessel formation. Findings also demonstrate the capability of zein scaffolds to maintain the multipotent capability of MSCs. Overall, findings demonstrate plant-derived zein may be a suitable alternative to the animal-derived gelatin and demonstrates zein's potential as a scaffold for tissue engineering.

Abstract Image

用植物提取的玉米蛋白替代动物提取的明胶用作组织工程支架
天然生物材料具有生物相容性和生物可降解性,通常用作组织工程支架。植物衍生材料因其丰富性和可持续资源性也受到了广泛关注。本研究评估了玉米衍生蛋白玉米蛋白作为动物衍生明胶的植物衍生替代品,明胶因其良好的细胞粘附特性而被广泛使用。对纯玉米蛋白用于组织工程的评估研究有限。在此,与明胶支架相比,纤维状玉米蛋白支架在体外进行了细胞粘附、生长和浸润评估,并在体内皮下模型中进行了进一步研究。泽因支架上的人间质干细胞(间充质干细胞)表达局灶粘附激酶和整合素,如 α v β 3、α 4 和 β 1,与明胶支架相似。与明胶支架上的细胞相比,间充质干细胞渗入泽汀支架的深度也更大。在体内,负载在泽因支架上的细胞显示出更高的细胞增殖和 CD31 表达,这是血管形成的指标。研究结果还证明了玉米蛋白支架能够保持间充质干细胞的多能性。总之,研究结果表明植物提取的玉米蛋白可能是动物提取的明胶的合适替代品,并证明了玉米蛋白作为组织工程支架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信