The recent research progress of polyphenol-derived biomaterials in wound repair

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Shuya Zhao, Lu Han, Liwei Yan, Xiong Lu
{"title":"The recent research progress of polyphenol-derived biomaterials in wound repair","authors":"Shuya Zhao,&nbsp;Lu Han,&nbsp;Liwei Yan,&nbsp;Xiong Lu","doi":"10.1049/bsb2.12074","DOIUrl":null,"url":null,"abstract":"<p>The clinical requirements for wound care are increasing daily, and the global wound dressing market is expanding; however, the research and development of new wound dressings are imminent. Natural biomolecules such as polyphenols, have been widely used in this field of vision. Owing to their unique anti-oxidative, adhesive, antibacterial and other bioactive functions, researchers have developed a series of wound dressings with excellent performance and applied them to a variety of biomaterials, such as hydrogels, nanofibers, films and scaffolds. They can effectively promote angiogenesis and fibroblast migration and proliferation, scavenge active oxygen free radicals, inhibit excessive inflammatory reactions at wound sites and ultimately accelerate wound healing. The authors summarise the latest progress in polyphenol-derived biomaterials in skin wound repair to provide inspiration for future wound dressing research.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"9 4","pages":"114-128"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The clinical requirements for wound care are increasing daily, and the global wound dressing market is expanding; however, the research and development of new wound dressings are imminent. Natural biomolecules such as polyphenols, have been widely used in this field of vision. Owing to their unique anti-oxidative, adhesive, antibacterial and other bioactive functions, researchers have developed a series of wound dressings with excellent performance and applied them to a variety of biomaterials, such as hydrogels, nanofibers, films and scaffolds. They can effectively promote angiogenesis and fibroblast migration and proliferation, scavenge active oxygen free radicals, inhibit excessive inflammatory reactions at wound sites and ultimately accelerate wound healing. The authors summarise the latest progress in polyphenol-derived biomaterials in skin wound repair to provide inspiration for future wound dressing research.

Abstract Image

多酚衍生生物材料在伤口修复中的最新研究进展
临床上对伤口护理的要求与日俱增,全球伤口敷料市场也在不断扩大,但新型伤口敷料的研发迫在眉睫。多酚等天然生物大分子已被广泛应用于这一领域。由于多酚具有独特的抗氧化、粘合、抗菌等生物活性功能,研究人员已开发出一系列性能优异的伤口敷料,并将其应用于多种生物材料,如水凝胶、纳米纤维、薄膜和支架等。它们能有效促进血管生成和成纤维细胞的迁移和增殖,清除活性氧自由基,抑制伤口处过度的炎症反应,最终加速伤口愈合。作者总结了多酚衍生生物材料在皮肤伤口修复方面的最新进展,为未来的伤口敷料研究提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信