{"title":"Characterization of Cocoa Butter Replacer Developed from Agricultural Waste of Mango Kernel and Rice Bran","authors":"M. Mokbul, Y. Cheow, L. Siow","doi":"10.1155/2023/9994657","DOIUrl":null,"url":null,"abstract":"The unique physicochemical properties of cocoa butter (CB) provide the desired physical properties in chocolate. Due to its high demand, increasing price, and limited supply, people are looking for cocoa butter alternatives (CBAs). In this study, CBA was prepared using enzymatic acidolysis on mango kernel fat stearin with rice bran oil blend. Reaction parameters (time (4-8 h), temperature (50-70°C), and enzyme load (6-10%, w/w)) were optimized using response surface methodology to produce similar triacylglycerol (TAG) composition as CB, and the properties of different proportions of CBAs with CB were assessed. Triacylglycerol content, melting behavior, solid fat content, crystal morphology, and polymorphism were investigated by high-performance liquid chromatography, differential scanning calorimetry, pulse nuclear magnetic resonance, polarized light microscopy, and X-ray diffraction, respectively. The optimum reaction condition to produce comparable percentages of monounsaturated TAGs in the final product was 8 h time, 8% enzyme load, and 50°C. After blending of CBA with CB in different proportions, no significant differences in terms of polymorphism, melting profile, and solid fat content were observed up to 20% CBA replacement. However, the TAG profile was similar up to 10% replacement of CB with CBA. In summary, the enzymatically produced CBA can potentially be used as a cocoa butter replacer up to 20% in the confectionery industry.","PeriodicalId":15717,"journal":{"name":"Journal of Food Processing and Preservation","volume":"210 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Processing and Preservation","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1155/2023/9994657","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The unique physicochemical properties of cocoa butter (CB) provide the desired physical properties in chocolate. Due to its high demand, increasing price, and limited supply, people are looking for cocoa butter alternatives (CBAs). In this study, CBA was prepared using enzymatic acidolysis on mango kernel fat stearin with rice bran oil blend. Reaction parameters (time (4-8 h), temperature (50-70°C), and enzyme load (6-10%, w/w)) were optimized using response surface methodology to produce similar triacylglycerol (TAG) composition as CB, and the properties of different proportions of CBAs with CB were assessed. Triacylglycerol content, melting behavior, solid fat content, crystal morphology, and polymorphism were investigated by high-performance liquid chromatography, differential scanning calorimetry, pulse nuclear magnetic resonance, polarized light microscopy, and X-ray diffraction, respectively. The optimum reaction condition to produce comparable percentages of monounsaturated TAGs in the final product was 8 h time, 8% enzyme load, and 50°C. After blending of CBA with CB in different proportions, no significant differences in terms of polymorphism, melting profile, and solid fat content were observed up to 20% CBA replacement. However, the TAG profile was similar up to 10% replacement of CB with CBA. In summary, the enzymatically produced CBA can potentially be used as a cocoa butter replacer up to 20% in the confectionery industry.
期刊介绍:
The journal presents readers with the latest research, knowledge, emerging technologies, and advances in food processing and preservation. Encompassing chemical, physical, quality, and engineering properties of food materials, the Journal of Food Processing and Preservation provides a balance between fundamental chemistry and engineering principles and applicable food processing and preservation technologies.
This is the only journal dedicated to publishing both fundamental and applied research relating to food processing and preservation, benefiting the research, commercial, and industrial communities. It publishes research articles directed at the safe preservation and successful consumer acceptance of unique, innovative, non-traditional international or domestic foods. In addition, the journal features important discussions of current economic and regulatory policies and their effects on the safe and quality processing and preservation of a wide array of foods.