A. Shah, Kannan Udaya Mohanan, Jisun Park, Hyungsoon Shin, E. Cho, Seongjae Cho
{"title":"An Area-Efficient Integrate-and-Fire Neuron Circuit with Enhanced Robustness against Synapse Variability in Hardware Neural Network","authors":"A. Shah, Kannan Udaya Mohanan, Jisun Park, Hyungsoon Shin, E. Cho, Seongjae Cho","doi":"10.1049/2023/1052063","DOIUrl":null,"url":null,"abstract":"Neuron circuits are the fundamental building blocks in the modern neuromorphic system. Designing compact and low-power neuron circuits can significantly improve the overall area and energy efficiencies of a neuromorphic chip architecture. Here, practical neuron circuits must overcome the variations arising from nonideal behaviors of synaptic devices, such as stuck-at-fault and conductance deviation. In this study, a compact leaky integrate-and-fire neuron circuit has been designed, with resilience to synaptic device state variations, for hardware implementation of spiking neural networks (SNNs). The proposed neuron circuit is simulated on the 0.35-μm Si complementary metal-oxide-semiconductor technology node by a series of circuit simulations based on HSPICE. The proposed circuit occupies a reduced area and exhibits low power consumption (14.7 µW per spike). Furthermore, the optimized circuit design results in a high degree of tolerance toward input-current variations arising from conductance-state variations in the synapse array. Hence, the proposed neuron circuit would be capable of substantially improving the area efficiency and reliability in the realization of the hardware-oriented SNN architectures.","PeriodicalId":505797,"journal":{"name":"IET Circuits, Devices & Systems","volume":"21 32","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits, Devices & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/1052063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neuron circuits are the fundamental building blocks in the modern neuromorphic system. Designing compact and low-power neuron circuits can significantly improve the overall area and energy efficiencies of a neuromorphic chip architecture. Here, practical neuron circuits must overcome the variations arising from nonideal behaviors of synaptic devices, such as stuck-at-fault and conductance deviation. In this study, a compact leaky integrate-and-fire neuron circuit has been designed, with resilience to synaptic device state variations, for hardware implementation of spiking neural networks (SNNs). The proposed neuron circuit is simulated on the 0.35-μm Si complementary metal-oxide-semiconductor technology node by a series of circuit simulations based on HSPICE. The proposed circuit occupies a reduced area and exhibits low power consumption (14.7 µW per spike). Furthermore, the optimized circuit design results in a high degree of tolerance toward input-current variations arising from conductance-state variations in the synapse array. Hence, the proposed neuron circuit would be capable of substantially improving the area efficiency and reliability in the realization of the hardware-oriented SNN architectures.