Kishore Kumar Y B, Suresh Babu G, Swapna Smitha A S, Surya Sekhar Reddy M, Kiran Y B
{"title":"Cu2ZnSnS4 Thin Film Solar Cell Construction Using Chemical Technique","authors":"Kishore Kumar Y B, Suresh Babu G, Swapna Smitha A S, Surya Sekhar Reddy M, Kiran Y B","doi":"10.13005/ojc/390622","DOIUrl":null,"url":null,"abstract":"Cu2ZnSnS4 (CZTS) presents itself as a potential quaternary semiconductor absorber layer in the field of thin film heterojunction solar cells. The conventional spray pyrolysis method has been used in the present investigation. X-ray diffraction results confirm the structure of the deposited films as kesterite. The lattice parameters are determined to be a = 0.5436 nm and c = 1.0856 nm. The material exhibits an energy gap of 1.5 eV and an optical absorption coefficient exceeding 104 /cm. CZTS films exhibit a p-type nature. The deposited films are kept on the hot surface for some time after the chemical spray pyrolysis is finished, which contributes to improved crystallinity. Using chemical synthesis techniques, a Cu2ZnSnS4 thin film solar cell is constructed. These solar cells exhibited an efficiency of 0.5%. Ongoing efforts are directed towards achieving reasonable efficiency levels.","PeriodicalId":19599,"journal":{"name":"Oriental Journal Of Chemistry","volume":"101 4","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal Of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojc/390622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cu2ZnSnS4 (CZTS) presents itself as a potential quaternary semiconductor absorber layer in the field of thin film heterojunction solar cells. The conventional spray pyrolysis method has been used in the present investigation. X-ray diffraction results confirm the structure of the deposited films as kesterite. The lattice parameters are determined to be a = 0.5436 nm and c = 1.0856 nm. The material exhibits an energy gap of 1.5 eV and an optical absorption coefficient exceeding 104 /cm. CZTS films exhibit a p-type nature. The deposited films are kept on the hot surface for some time after the chemical spray pyrolysis is finished, which contributes to improved crystallinity. Using chemical synthesis techniques, a Cu2ZnSnS4 thin film solar cell is constructed. These solar cells exhibited an efficiency of 0.5%. Ongoing efforts are directed towards achieving reasonable efficiency levels.
期刊介绍:
Oriental Journal of Chemistry was started in 1985 with the aim to promote chemistry research. The journal consists of articles which are rigorously peer-reviewed. The journal was indexed in Emerging Science citation index in 2016. The Editorial board member consists of eminent international scientist in all fields of Chemistry. Details of each member and their contact information is mentioned in website. The journal has thorough ethics policies and uses plagiarism detection software(ithenticate) to screen each submission. The journal has recently partnered with publons as a part of making our reviews more transparent. The journal has recently incorporated PlumX for article level matrix. The journal is promoting research on all social and academic platforms mentioned in PlumX guidelines. The journal uses google maps to improve on the geographical distribution of Editorial board members as well as authors.