{"title":"GHz surface-wave phononic crystal biosensor using a Fano resonance at the bandgap edge","authors":"Wenlou Yuan, A. Nagakubo, Oliver Wright, H. Ogi","doi":"10.35848/1347-4065/ad193a","DOIUrl":null,"url":null,"abstract":"We propose an ultrahigh-sensitivity biosensor based on a GHz surface-acoustic-wave nanopillar phononic crystal using a Fano resonance at the bandgap edge. By means of numerical simulations, we find that the asymmetric, sharp and controllable transmission dip at the bandgap edge of the phononic crystal arising from the Fano resonance, which is caused by mode coupling between a local nanopillar resonance and the surface acoustic waves, allows ultrasensitive detection of attached biomolecules. The effect of such mass loading is studied, showing an attogram detection limit, and a unique “on-off” triggering at the sub-femtogram level for each individual Au nanopillar. This study opens up frontiers for biosensing applications of phononic crystals and ultrahigh-frequency surface acoustic wave devices.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"242 6‐7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad193a","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an ultrahigh-sensitivity biosensor based on a GHz surface-acoustic-wave nanopillar phononic crystal using a Fano resonance at the bandgap edge. By means of numerical simulations, we find that the asymmetric, sharp and controllable transmission dip at the bandgap edge of the phononic crystal arising from the Fano resonance, which is caused by mode coupling between a local nanopillar resonance and the surface acoustic waves, allows ultrasensitive detection of attached biomolecules. The effect of such mass loading is studied, showing an attogram detection limit, and a unique “on-off” triggering at the sub-femtogram level for each individual Au nanopillar. This study opens up frontiers for biosensing applications of phononic crystals and ultrahigh-frequency surface acoustic wave devices.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS