S. Bhowmick, F. Muhaffel, Shayan Shirzadian, Hüseyin Çimenoğlu, A. Alpas
{"title":"Tribological Performance of a Plasma Electrolytic Oxidation-Coated Mg Alloy in Graphene-Incorporated Ethanol","authors":"S. Bhowmick, F. Muhaffel, Shayan Shirzadian, Hüseyin Çimenoğlu, A. Alpas","doi":"10.3390/lubricants12010009","DOIUrl":null,"url":null,"abstract":"This study investigated the friction and wear characteristics of a plasma electrolytic oxidation (PEO)-coated Mg–Al alloy (AZ31) in sliding contact against steel using graphene nanoplatelets (GNPs) containing ethanol as a lubricant. The results revealed that the typically high coefficient of friction (COF) of PEO-coated surfaces under dry sliding (0.74) was notably reduced to 0.18 during the sliding tests conducted in GNP-free ethanol. When the ethanol contained 5 × 10−4 wt.% GNPs, the COF of the uncoated AZ31 alloy further dropped to 0.17. The PEO-coated surfaces achieved a significantly lower COF of 0.07 and demonstrated a marked reduction in wear rate, attributed to the formation of a tribolayer incorporating graphene. These findings highlight the significant potential of GNP-incorporated ethanol to improve the tribological performance of PEO-coated AZ31, presenting a promising avenue for advancing lightweight, sustainable, and efficient automotive technologies.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"7 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12010009","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the friction and wear characteristics of a plasma electrolytic oxidation (PEO)-coated Mg–Al alloy (AZ31) in sliding contact against steel using graphene nanoplatelets (GNPs) containing ethanol as a lubricant. The results revealed that the typically high coefficient of friction (COF) of PEO-coated surfaces under dry sliding (0.74) was notably reduced to 0.18 during the sliding tests conducted in GNP-free ethanol. When the ethanol contained 5 × 10−4 wt.% GNPs, the COF of the uncoated AZ31 alloy further dropped to 0.17. The PEO-coated surfaces achieved a significantly lower COF of 0.07 and demonstrated a marked reduction in wear rate, attributed to the formation of a tribolayer incorporating graphene. These findings highlight the significant potential of GNP-incorporated ethanol to improve the tribological performance of PEO-coated AZ31, presenting a promising avenue for advancing lightweight, sustainable, and efficient automotive technologies.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding