Prediction of Elementary School Students' Mental Health using Decision Tree Algorithm with K-Fold Cross-Validation in Bone Bolango Regency, Gorontalo Province
Salahuddin Liputo, Franky Tupamahu, Wahyudin Hasyim, Sri Ariyanti Sabiku, Rahmawaty Parman, Aan Hanapi
{"title":"Prediction of Elementary School Students' Mental Health using Decision Tree Algorithm with K-Fold Cross-Validation in Bone Bolango Regency, Gorontalo Province","authors":"Salahuddin Liputo, Franky Tupamahu, Wahyudin Hasyim, Sri Ariyanti Sabiku, Rahmawaty Parman, Aan Hanapi","doi":"10.37899/journallamultiapp.v4i6.1005","DOIUrl":null,"url":null,"abstract":"Mental health is a fundamental component of the World Health Organization's definition of health, encompassing not only freedom from illness but also well-being in physical, mental, and social dimensions. In today's modern society, mental health has become a paramount issue, as its soundness enables individuals to realize their own potential, cope with normal life pressures, work productively, and contribute effectively to their communities. In Indonesia, mental health-related challenges are associated with the absence of a reliable mental health detection tool. Conversely, abroad, there has been a substantial amount of research focused on innovative technology-based mental health detection using Machine Learning. This study aims to predict mental health using the Social Emotional Health Survey-Secondary (SEHS-S) as the evaluation criterion for prediction through Machine Learning. The Decision Tree algorithm is employed, and the prediction model is tested using K-Fold Cross-Validation, resulting in 8 folds with an accuracy rate of 78.61%.","PeriodicalId":272596,"journal":{"name":"Journal La Multiapp","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal La Multiapp","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37899/journallamultiapp.v4i6.1005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mental health is a fundamental component of the World Health Organization's definition of health, encompassing not only freedom from illness but also well-being in physical, mental, and social dimensions. In today's modern society, mental health has become a paramount issue, as its soundness enables individuals to realize their own potential, cope with normal life pressures, work productively, and contribute effectively to their communities. In Indonesia, mental health-related challenges are associated with the absence of a reliable mental health detection tool. Conversely, abroad, there has been a substantial amount of research focused on innovative technology-based mental health detection using Machine Learning. This study aims to predict mental health using the Social Emotional Health Survey-Secondary (SEHS-S) as the evaluation criterion for prediction through Machine Learning. The Decision Tree algorithm is employed, and the prediction model is tested using K-Fold Cross-Validation, resulting in 8 folds with an accuracy rate of 78.61%.